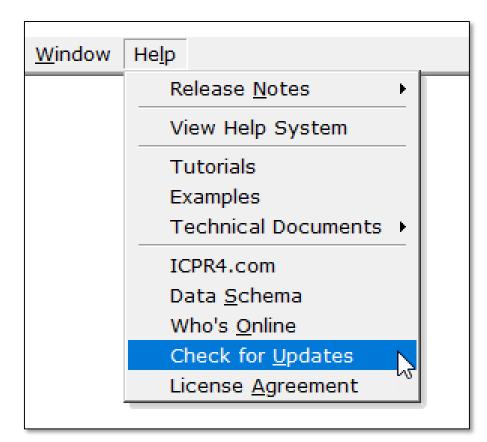
ic

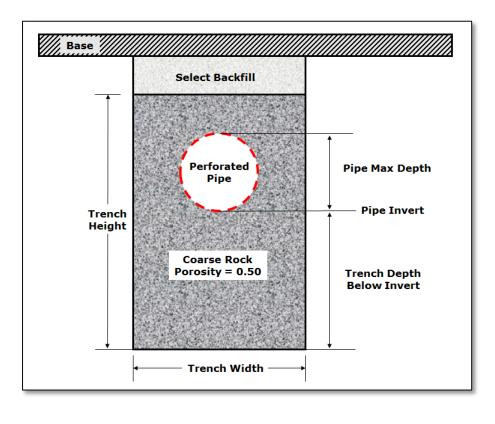

Regulatory Review Webinar Series

Lesson 4 Hydraulics, Part 3

> Peter J. Singhofen Streamline Technologies, Inc.

Thursday – October 31, 2019

Next Webinar – Lesson 5: Typical Pre/Post Examples Tuesday November 5, 2019 11:30 – 1:30 (EDT)



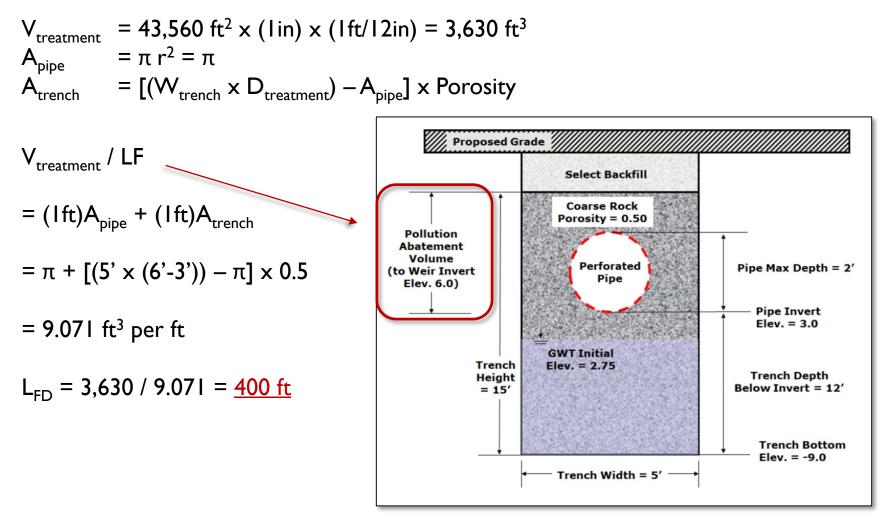
We will try to post a recording of this webinar and/or the presentation material as soon as we can. To find them: "Check for Updates" sometime tomorrow.

support@icpr4.com

Lesson 4 Topics

- French Drain Links
- Percolation Links
- Examples

Source: An Overview of Urban Stormwater Management Practices in Miami-Dade County, Florida, 2004


Includes:

- Storage in Trench & Pipe
- Pipe Hydraulics

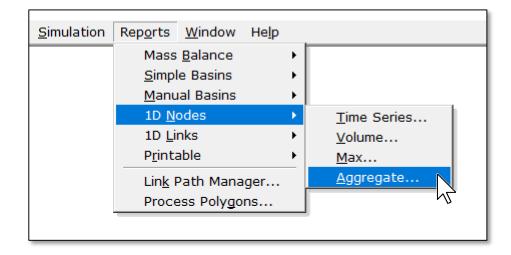
Does Not Include:

• Percolation

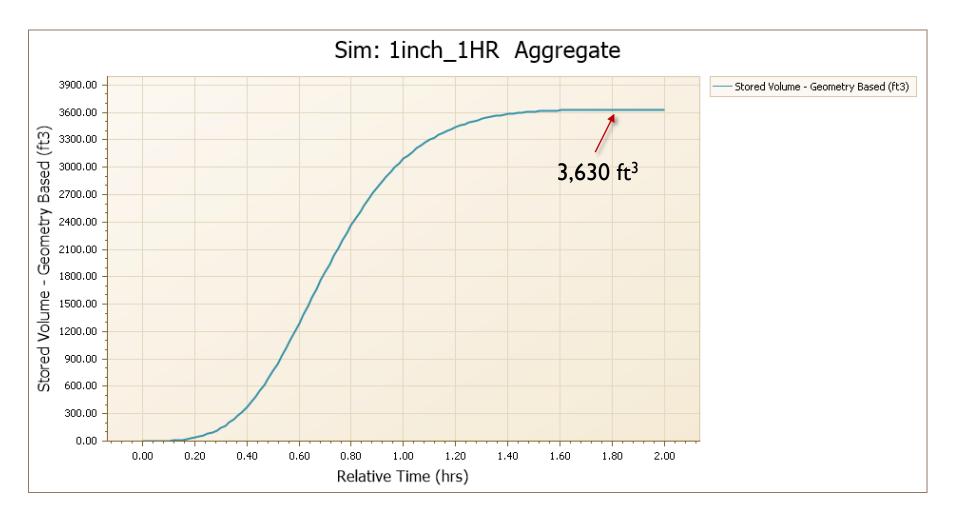
Provide treatment volume for 1" of runoff from a 1-ac site

icpr

Model Data



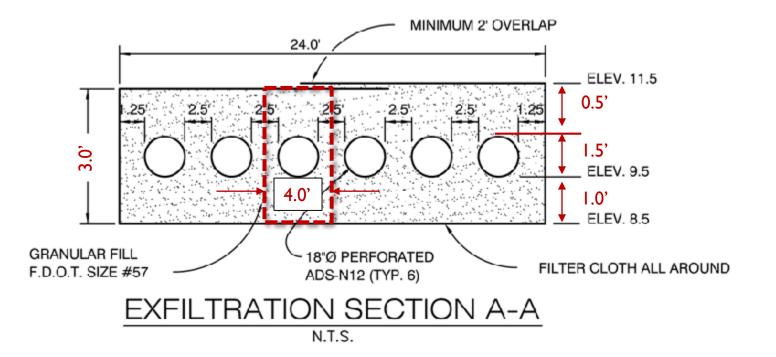
Name	FRENCH DRAIN	Damping Threshold	0
Scenario	French Drain no Perc 🔹	FHWA Culvert Code	1
From Node	Α	Entrance Loss Coefficient	0.5
To Node	General Data	Exit Loss Coefficient	0.1
Link Count	1	Bend Loss Coefficient	• Perforated
Flow Direction	Both	Bend Location	• Pipe Data
		Energy Switch	Energy 🔹
		Pipe Length	416
		Upstream Pipe Invert	3
Trench Length	400	Downstream Pipe Invert	3
Trench Width	5	Manning's N	0.012
Trench Height	15 Trench Data	Pipe Geometry	Circular 💌
Trench Depth Below Invert	12	Pipe Max Depth	2
Trench Gravel Porosity	0.5		
			-
		Data	Form
	[
Comment			* *
		Create	Delete

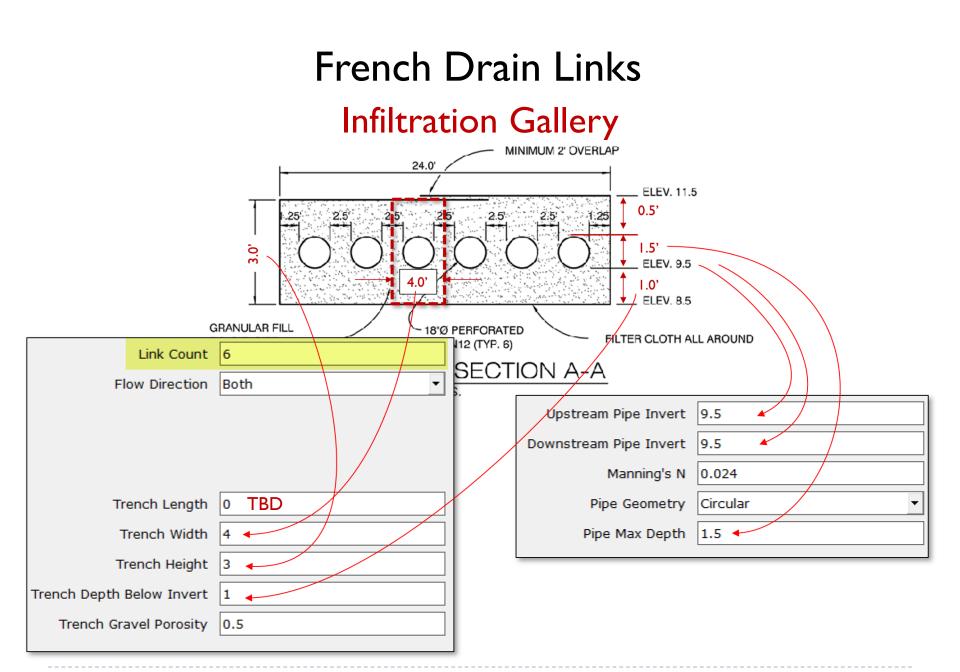

French Drain Link: FRENCH DRA	Pipe	Data	
Scenario:	French Drain no Perc	Damping:	0.0000 ft
From Node:	А	FHWA Code:	1
To Node:	В	Entr Loss Coef:	0.50
Link Count:	1	Exit Loss Coef:	0.10
Flow Direction:	Both	Bend Loss Coef:	0.00
		Bend Location:	0.00 ft
		Energy Switch:	Energy
		Pipe Length:	416.00 ft
Trench Length:	400.00 ft	Pipe Invert:	3.00 ft
Trench Width:	5.00 ft	Pipe Invert:	3.00 ft
Trench Height:	15.00 ft	Manning's N:	0.0120
Trench Depth Below Invert:	12.00 ft	Geometry Type:	Circular
Trench Gravel Porosity:	0.500	Pipe Max Depth:	2.00 ft
Comment:			

Input Report

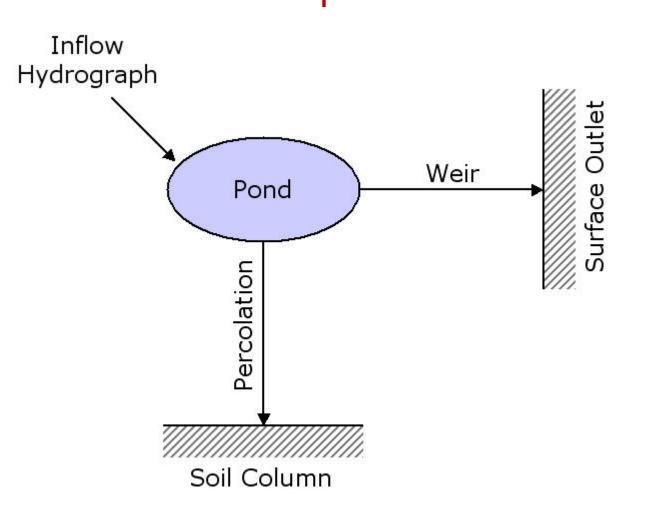
9

Year Moth Day Hour Start Time 0 0 0 end Time 0 0 0 Report Chart Item Selection Item Selection Type Superimpose params V Parameter Selection Simulation Selection Type Superimpose params V Parameter Selection Secanics Type Superimpose params V Parameter Selection Secanics Start Time Otal Outflow Rate Scenario2 BNDY Basin Diffow Volume Scenario2 right click in Basin Diffow Volume Scenario2 right click in Click here to Scenario2 right click in this panel Total Inflow Volume Total Outflow Volume Scenario2 right click in Units Volume - ft3 / m3 Total Outflow Volume Scenario2 right click in View Report View Chart View Chart View Chart Scenario2 Scenario2	Reports : 1D Noo	des - Aggregate			- 🗆 X
End Time 0 0 0 0 0 Item Selection Item Selectin Item Selection Item Selection Item Selection Item Selection Ite		Year	Month	Day	Hour
Report Chart Simulation Selection Item Selection Type Superimpose params Y Parameter Selection Scenarios X Parameter Absolute Time Total Inflow Rate Simulations Item Selection Base Outflow Volume Base Inflow Volume Item Selection Item Selection Base Outflow Volume Item Selection Item Selection Item Selection Item Selection Item Selection Item Selectin Ite	Start Time	0	0	0	0
Type Superimpose params Y Parameter Selection X Parameter Absolute Time Total Inflow Rate Base Inflow Yolume Without Scenario2 Base Units Volume - ft3 / m3 View Raport View Chart	End Time	0	0	0	0
Type Superimpose params Y Parameter Selection X Parameter Absolute Time Total Inflow Rate Base Inflow Volume Base Inflow Volume Basin Inflow Volume Basin Inflow Volume Basin Inflow Volume Basin Inflow Volume External Outflow Volume Click here to Stored Volume Scenario2 View Rate Stored Volume District Total Inflow Volume District View Chart	Report Char	t			Item Selection
X Parameter Absolute Time Total Inflow Rate Total Outflow Rate Base Inflow Volume Base Inflow Volume Base Inflow Volume Circk here to Stored Volume (Flow Based) Total Inflow Volume Stored Volume (Flow Based) Total Inflow Volume Total Outflow Volume Tota	Туре	Superimpose params	Y Parameter Selection		A B
Units Volume - ft3 / m3 View Chart Help	X Parameter	Absolute Time	 Total Outflow Rate Base Inflow Volume Base Outflow Volume Basin Inflow Volume Basin Outflow Volume External Inflow Volume Link Inflow Volume Link Outflow Volume Stored Volume (Geometry Based) Total Inflow Volume 	Scenario2	□ BNDY right click in this panel
2 Selected Item(s) in Selected Simulation(s)	View Report	Volume - ft3 / m3			
			2 Sele	ected Item(s) in Selected Simulation	l(S)




© 2019, Streamline Technologies, Inc.

12


Lesson 3 - Hydraulics, Part 2

French Drain Links Infiltration Gallery

Percolation Links Concepts

15

Lesson 3 - Hydraulics, Part 2

<u>H</u> ydrology	1D Hydraulics	Reference Elements	<u>S</u> imulation
	<u>N</u> odes		
	All <u>L</u> ink Typ	es	
	<u>C</u> hannel Lir	nks	
	<u>P</u> ipe Links		
	<u>W</u> eir Links.		
	<u>D</u> rop Struc	ture Links	
	<u>R</u> ating Curv	/e Links	
	Bre <u>a</u> ch Link	(s	
	<u>F</u> rench Dra		
	Percola <u>t</u> ion	Links	
	C <u>h</u> annel Cr	oss Sections	
	Weir Cross	Sections	
	Operating	Tables 🕨	

Name	PERC	Surface Area Option	Vary Based on Stage/Area T 🔻
Scenario	French Drain with Perc 🔹		
From Node	POND		
To Node	GWT	Vertical Flow Termination	Horizontal Flow Algorithm
Link Count	1	Perimeter 1	600
Flow Direction	Both 💌	Perimeter 2	1228
Aquifer Base Elevation	76	Perimeter 3	3142
Water Table Elevation	96	Distance P1 to P2	100
Annual Recharge Rate	0	Distance P2 to P3	400
Horizontal Conductivity	16	# of Cells P1 to P2	20
Vertical Conductivity	8	# of Cells P2 to P3	40
Fillable Porosity	0.3		
Layer Thickness	99		
Comment			
		Create	Delete

17

	Name	PERC	Surface Area Option	Vary Based on Stage/Area T 🔻
	Scenario	French Drain with Perc 🔹		
	From Node	POND	Connectivity	
	To Node	GWT	Vertical Flow Termination	Horizontal Flow Algorithm
	Link Count	1	Perimeter 1	600
1	Flow Direction	Both 💌	Perimeter 2	1228
Aquifer E	Base Elevation	76	Perimeter 3	3142
Water T	able Elevation	96	Distance P1 to P2	100
Annual F	Recharge Rate	0	Distance P2 to P3	400
Horizonta	l Conductivity	16	# of Cells P1 to P2	20
Vertica	l Conductivity	8	# of Cells P2 to P3	40
Fi	llable Porosity	0.3		
La	yer Thickness	99		
	Comment			A V
			Create	Delete

18

Lesson 3 - Hydraulics, Part 2

Percolation Links

Data Form

Name	PERC	Surface Area Option	Vary Based on Stage/Area T 🔻
Scenario	French Drain with Perc 🔹		Options
From Node	POND		options
To Node	GWT	Vertical Flow Termination	Horizontal Flow Algorithm
Link Count	1	Perimeter 1	600
Flow Direction	Both 💌	Perimeter 2	1228
Aquifer Base Elevation	76	Perimeter 3	3142
Water Table Elevation	96	Distance P1 to P2	100
Annual Recharge Rate	0	Distance P2 to P3	400
Horizontal Conductivity	16	# of Cells P1 to P2	20
Vertical Conductivity	8	# of Cells P2 to P3	40
Fillable Porosity	0.3		
Layer Thickness	99		
Comment			* *
		Create	Delete

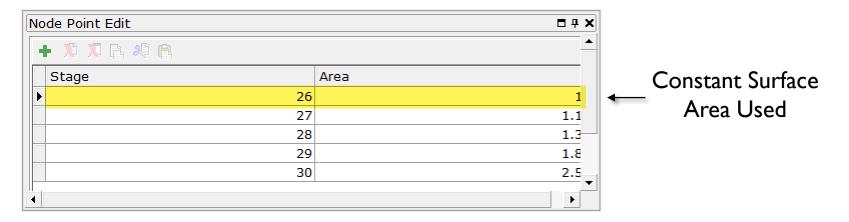
Name	PERC	Surface Area Option	Vary Based on Stage/Area T 🔻
Scenario	French Drain with Perc 🔹		
From Node	POND		
To Node	GWT	Vertical Flow Termination	Horizontal Flow Algorithm
Link Count	1	Perimeter 1	600
Flow Direction	Both	Perimeter 2	1228
Aquifer Base Elevation	76	Perimeter 3	3142
Water Table Elevation	96	Distance P1 to P2	100
Annual Recharge Rate	0	Distance P2 to P3	400
Horizontal Conductivity	16	# of Cells P1 to P2	20
Vertical Conductivity	8	# of Cells P2 to P3	40
Fillable Porosity	0.3	A quifan Paramat	0.100
Layer Thickness	99	Aquifer Paramet	ers
Comment			▲ ▼
		Create	Delete

Name	PERC	Surface Area Option	Vary Based on Stage/Area T 🔻
Scenario	French Drain with Perc 🔹	Computatio	onal Grid Parameters
From Node	POND		
To Node	GWT	Vertical Flow Termination	Horizontal Flow Algorithm
Link Count	1	Perimeter 1	600
Flow Direction	Both 💌	Perimeter 2	1228
Aquifer Base Elevation	76	Perimeter 3	3142
Water Table Elevation	96	Distance P1 to P2	100
Annual Recharge Rate	0	Distance P2 to P3	400
Horizontal Conductivity	16	# of Cells P1 to P2	20
Vertical Conductivity	8	# of Cells P2 to P3	40
Fillable Porosity	0.3		
Layer Thickness	99		
Comment			
		Create	Delete

Percolation Links Input Report

Scenario:	French Drain with Perc	Surface Area Option:	Vary Based on Stage/Area Table
From Node:	POND	Vertical Flow Termination:	Horizontal Flow Algorithm
To Node:	GWT	Perimeter 1:	600.00 ft
Link Count:	1	Perimeter 2:	1228.00 ft
Flow Direction:	Both	Perimeter 3:	3142.00 ft
Aquifer Base Elevation:	76.00 ft	Distance P1 to P2:	100.00 ft
Water Table Elevation:	96.00 ft	Distance P2 to P3:	400.00 ft
Annual Recharge Rate:	0 іру	# of Cells P1 to P2:	20
Horizontal Conductivity:	16.000 fpd	# of Cells P2 to P3:	40
Vertical Conductivity:	8.000 fpd		
Fillable Porosity:	0.300		
Layer Thickness:	99.00 ft		

Comment:


Surface Area Option

- I. Use Ist Point in Stage/Area Table
- 2. Vary based on Stage/Area Table
- 3. User Specified

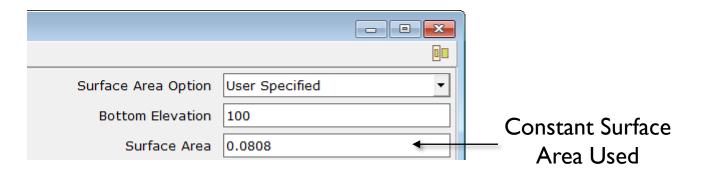
Surface Area Option	Vary Based on Stage/Area T ▼ Use 1st Point in Stage/Area Table Vary Based on Stage/Area Table User Specified
Vertical Flow Termination Perimeter 1	×

Surface Area Option

- I. Use Ist Point in Stage/Area Table
- 2. Vary based on Stage/Area Table
- 3. User Specified

Surface Area Option

- I. Use Ist Point in Stage/Area Table
- 2. Vary based on Stage/Area Table


3. User Specified

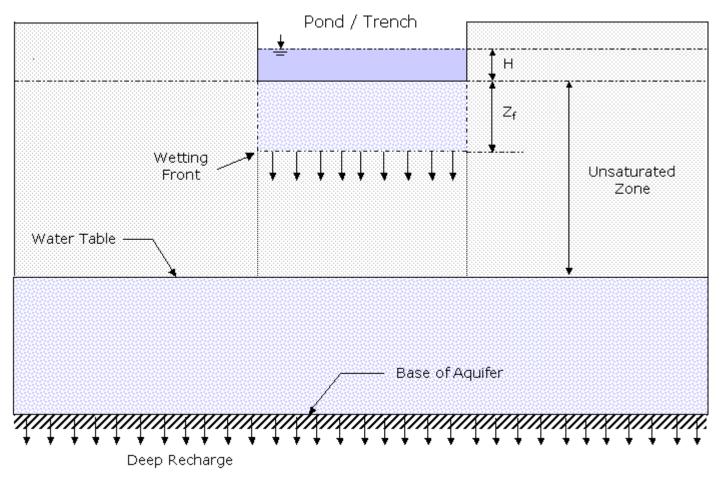
Node Point Edit			□ 7 ×
+ X X B # B			
Stage		Area	
E	26		1
	27		1.1
	28		1.3
	29		1.8
	30		2.5

Variable Surface Area Used

Surface Area Option

- I. Use Ist Point in Stage/Area Table
- 2. Vary based on Stage/Area Table
- 3. User Specified

- Constant Surface Area
- Variable Surface Area


Percolation Based on Modified Green-Ampt Equation (driving head is considered)

© 2019, Streamline Technologies, Inc.

Percolation Links

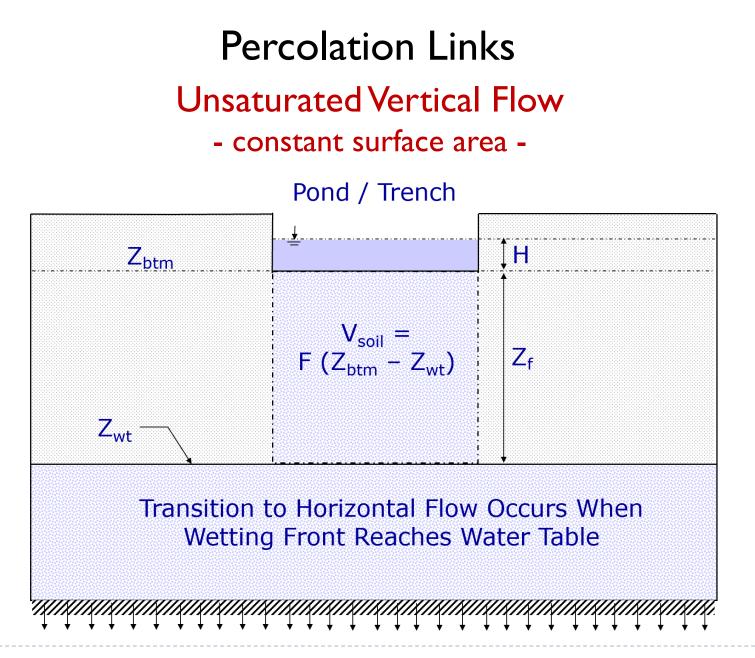
Unsaturated Vertical Flow

- constant surface area -

Percolation Links Unsaturated Vertical Flow - constant surface area -

 $q = K_v I$ (Darcy's Equation) $I = (H + Z_f) / Z_f$ (Gradient)

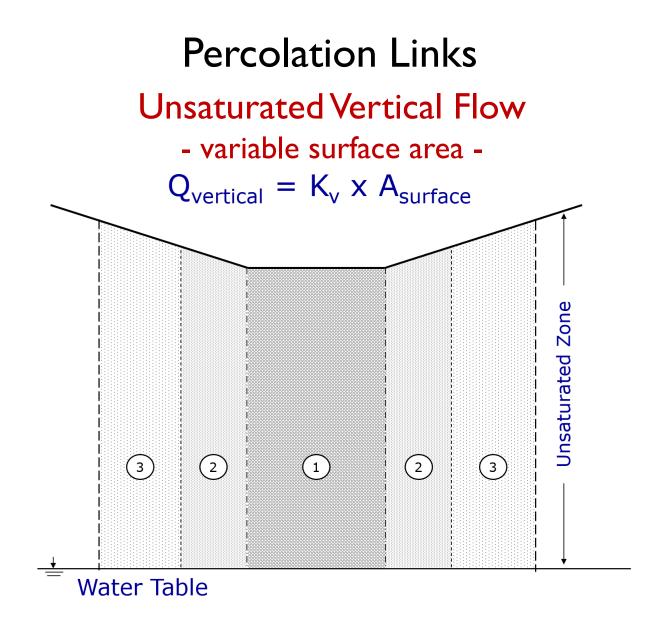
Modified Form of the Green-Ampt Equation

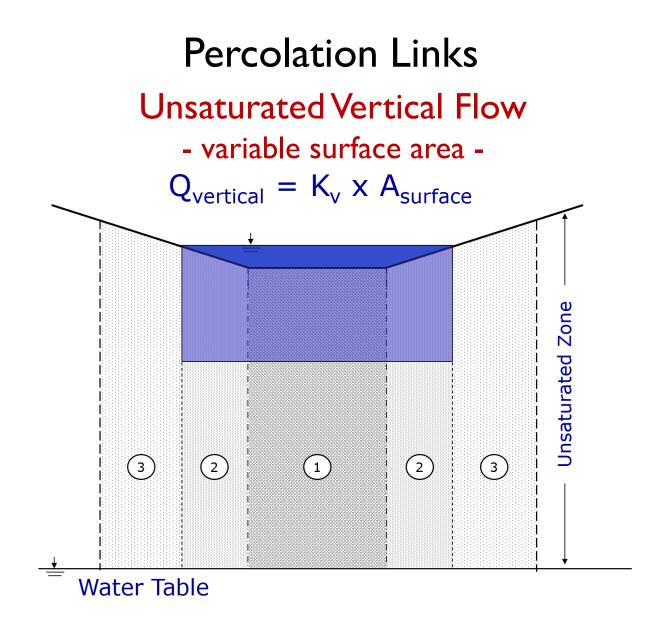

 $t_0 = (F H / K_y) [(Z_0 / H) - ln(I + Z_0 / H)]$

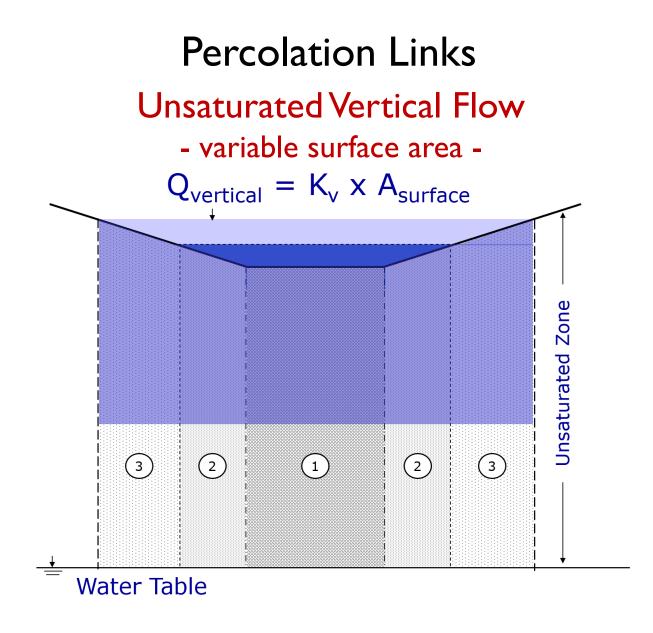
Percolation Links Unsaturated Vertical Flow - constant surface area -

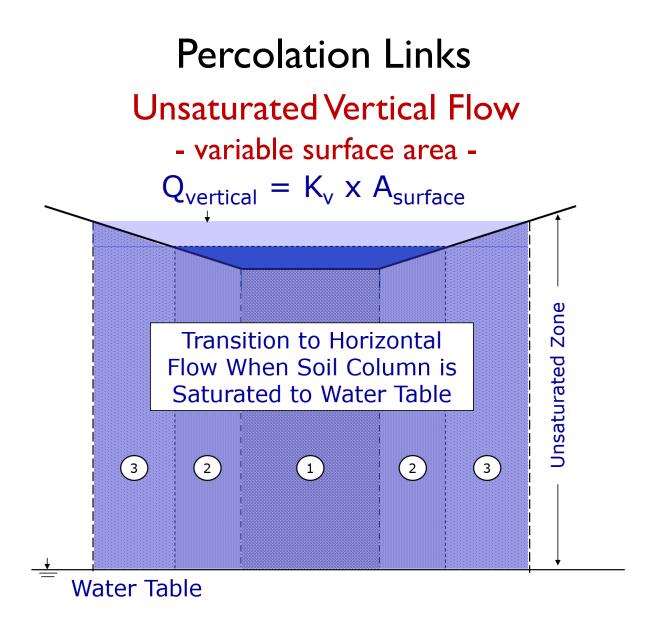
 $q = K_v I$ (Darcy's Equation) $I = (H + Z_f + \Psi) / Z_f$ (Gradient)

Modified Form of the Green-Ampt Equation

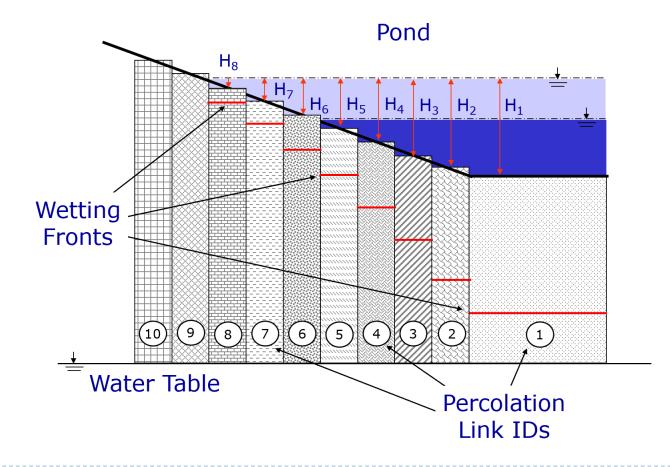

 $t_0 = (F H / K_v) [(Z_0 / H) - ln(I + Z_0 / H)]$




Percolation Links Unsaturated Vertical Flow - variable surface area -


- Constant Surface Area
- Variable Surface Area

Percolation Based on Vertical Conductivity Multiplied by Wetted Surface Area (driving head not considered)



Percolation Links Unsaturated Vertical Flow - stair stepping approach -

The advantages of the modified Green-Ampt equation can be combined with a variable surface area by "stair stepping" up the slope of the pond with multiple perc links.

Percolation Links Unsaturated Vertical Flow - stair stepping approach -

Transition to Saturated Horizontal Flow

- vertical flow termination option -
- 1. Horizontal Flow Algorithm
- 2. Percent of Final Rate
- 3. Constant Rate

Vertical Flow Termination	Horizontal Flow Algorithm 🔻
Perimeter 1 Perimeter 2	Horizontal Flow Algorithm Percent of Final Rate Constant Rate
Perimeter 3	
Distance P1 to P2	×
Distance P2 to P3	400

Transition to Saturated Horizontal Flow

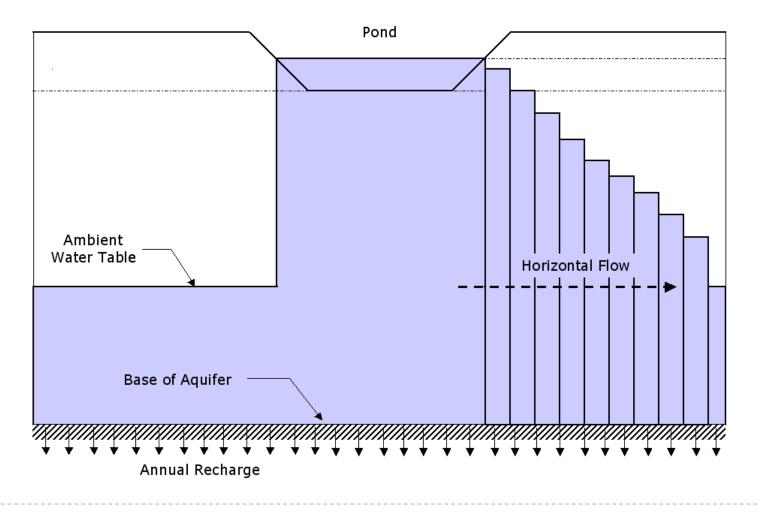
- vertical flow termination option -
- 1. Horizontal Flow Algorithm
- 2. Percent of Final Rate
- 3. Constant Rate

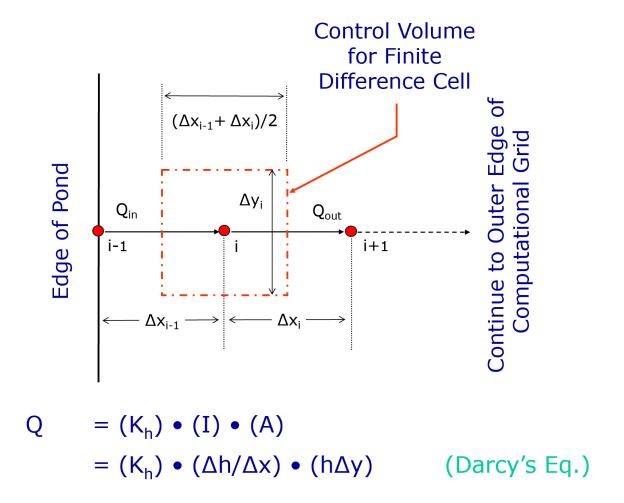
Vertical Flow Termination	Percent of Final Rate
% of Final Rate	0

Transition to Saturated Horizontal Flow

- vertical flow termination option -
- 1. Horizontal Flow Algorithm
- 2. Percent of Final Rate
- 3. Constant Rate

Vertical Flow Termination	Constant Rate
Constant Rate	0

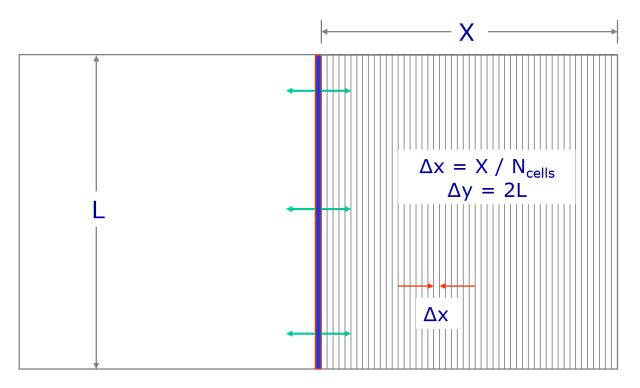

Transition to Saturated Horizontal Flow

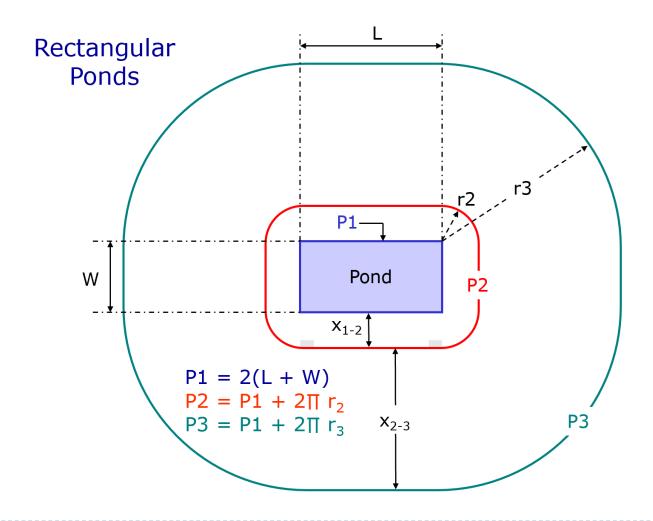

- vertical flow termination option -

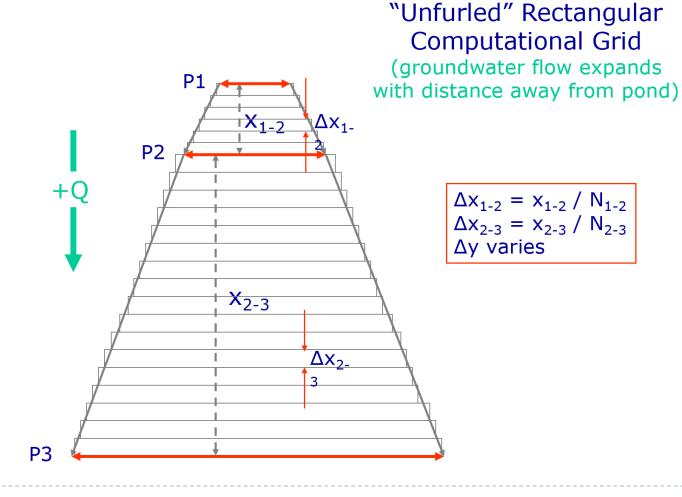
1. Horizontal Flow Algorithm

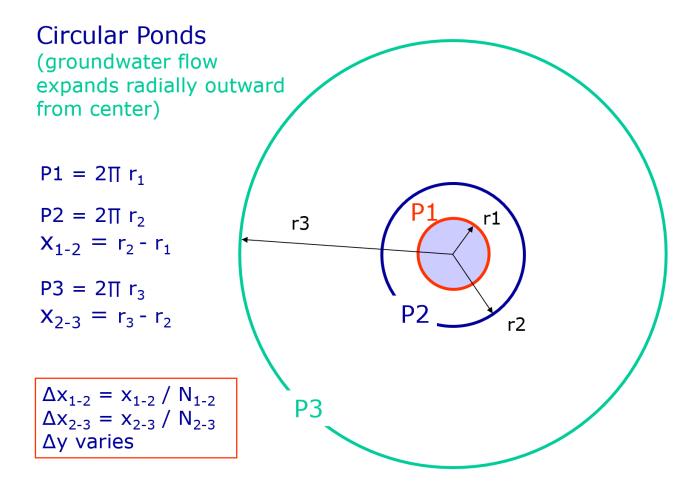
- 2. Percent of Final Rate
- 3. Constant Rate

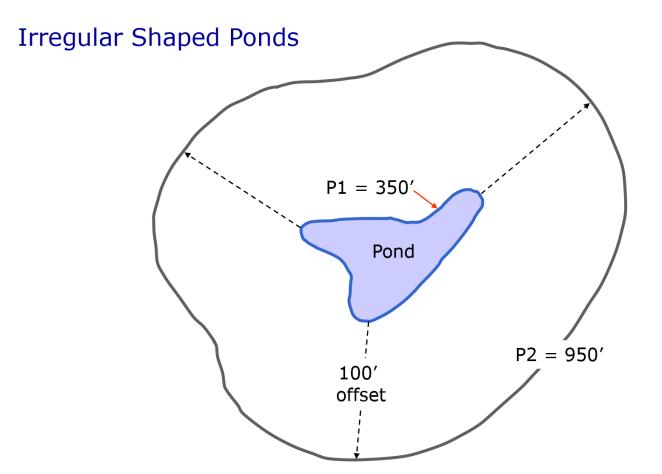
	Vertical Flow Termination	Horizontal Flow Algorithm
	Perimeter 1	600
	Perimeter 2	1228
Computational	Perimeter 3	3142
Computational Grid	Distance P1 to P2	100
Grid	Distance P2 to P3	400
	# of Cells P1 to P2	20
	# of Cells P2 to P3	40

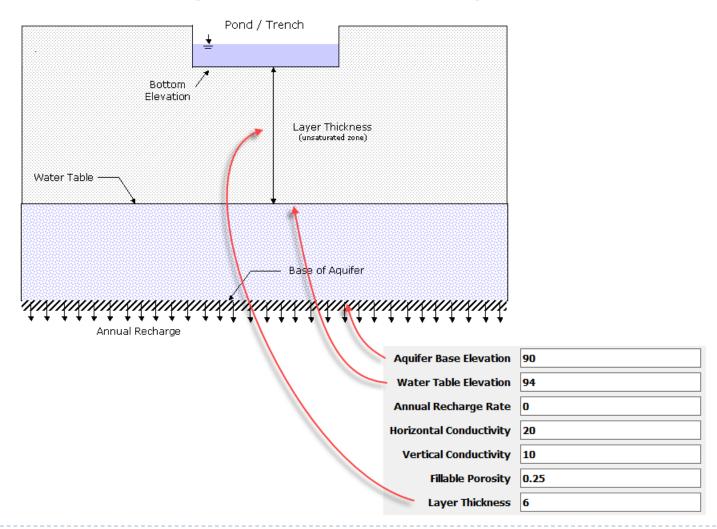

44

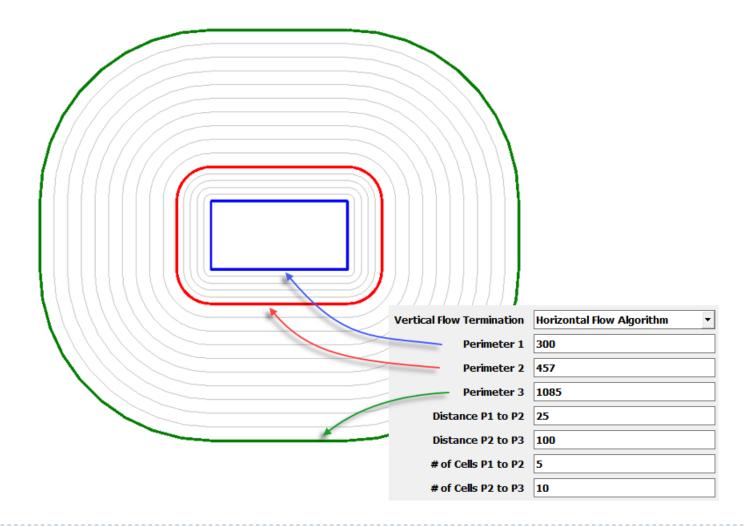

Lesson 3 - Hydraulics, Part 2


Assumptions and Limitations of Perc Links

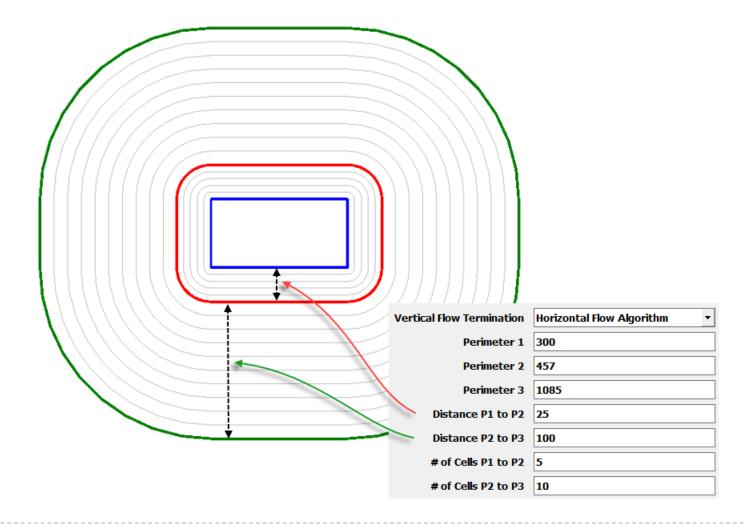

- 1. The aquifer base is assumed to be flat.
- 2. The ambient water table is assumed to be flat. Sloping water tables are not permitted.
- 3. Soil properties are homogeneous.
- 4. A physically-based rainfall-recharge mechanism is not included with percolation links.
- 5. Each percolation link is independent of other percolation links. Consequently, modeling ponds that are near one another or near other surface water bodies may require adjustments to the computational perimeters.


French Drain or Narrow Ditch (groundwater flow occurs from both sides and is perpendicular to surface flow)

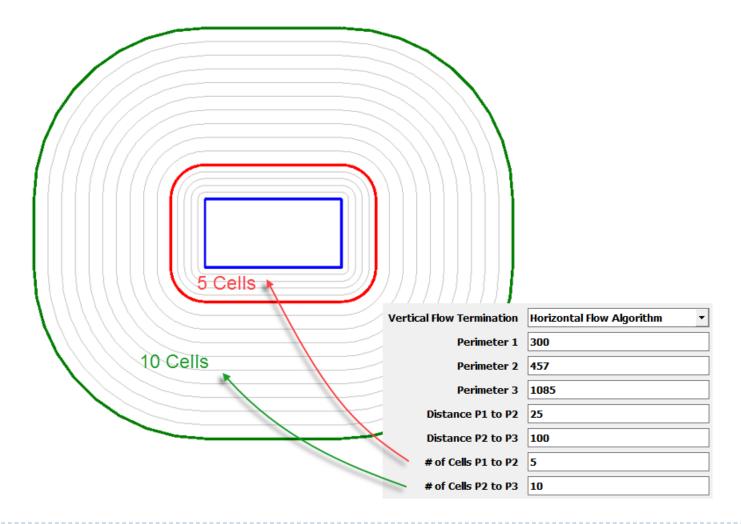




Input Parameters: Aquifer



Lesson 3 - Hydraulics, Part 2


Input Parameters: Computation Grid

Input Parameters: Computational Grid

Input Parameters: Computational Grid

Percolation Links Input Parameters: Initial Conditions

The water table (an input parameter) is used to initialize heads.

Aquifer Base Elevation	76
Water Table Elevation	96
Annual Recharge Rate	0
Horizontal Conductivity	16
Vertical Conductivity	8
Fillable Porosity	0.3
Layer Thickness	99

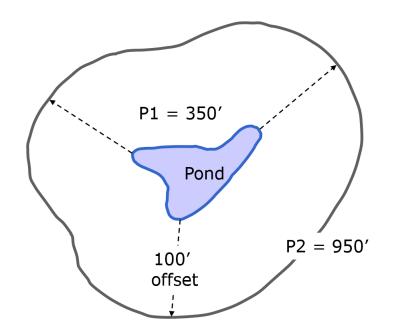
Input Parameters: Boundary Condition at Outer Edge (P3)

- For "Annual Recharge" = Zero, use
 "Fixed Head" = Water Table
- Otherwise, use "Zero Flow" and let Head fluctuate as needed

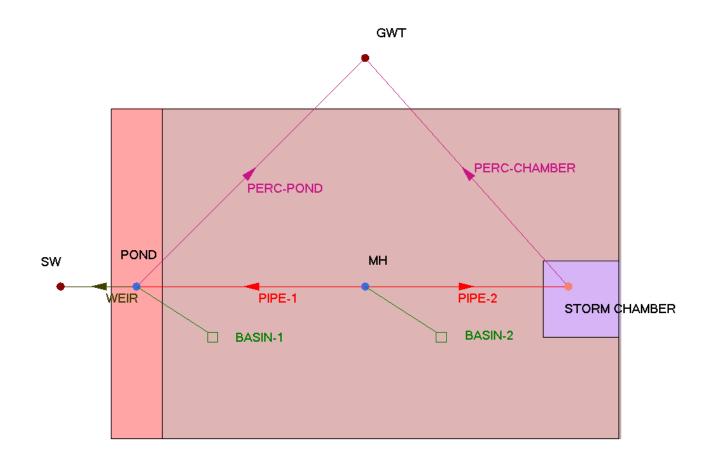
Aquifer Base Elevation	76
Water Table Elevation	96
Annual Recharge Rate	0
Horizontal Conductivity	16
Vertical Conductivity	8
Fillable Porosity	0.3
Layer Thickness	99

Aquifer Base Elevation	76	
Water Table Elevation	96	
Annual Recharge Rate	0.0001	
Horizontal Conductivity	16	
Vertical Conductivity	8	
Fillable Porosity	0.3	
Layer Thickness	99	

Input Parameters: Boundary Condition at Pond (PI)

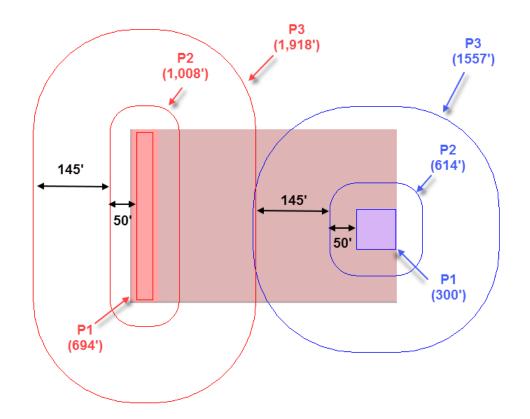

Use "Variable Head" = Pond Elevation unless, $Q_{vertical} < Q_{horizontal}$

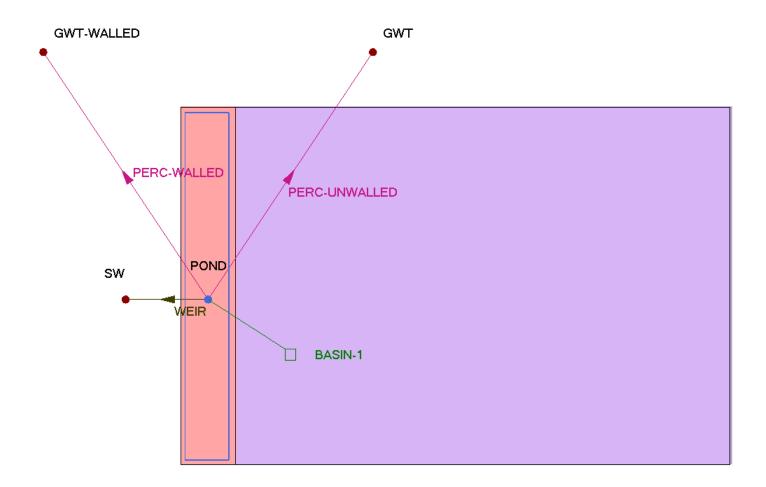
in which case,


set $Q_{horizontal} = Q_{vertical}$

Input Parameters: Final Perc Rate for Pond

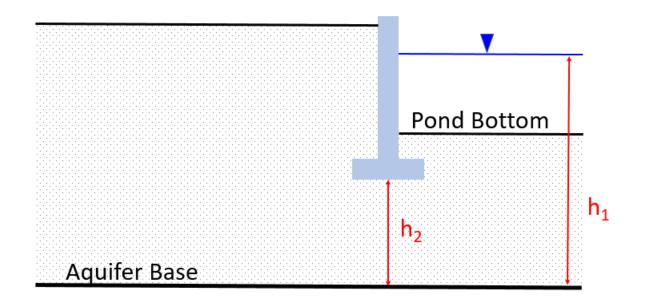
The flux (horizontal flow) across the innermost computational ring becomes the percolation rate for the pond or trench.


Percolation Links Setup Example: Storm Chamber & Pond

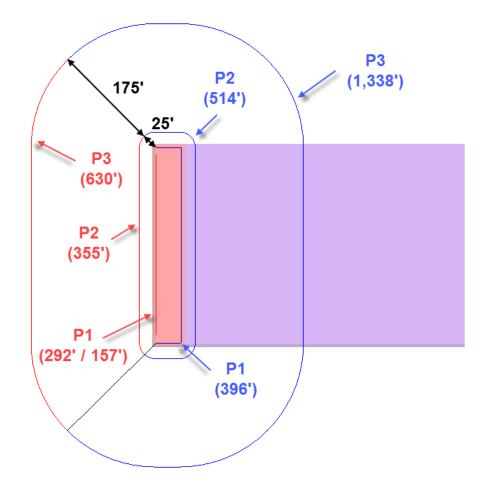

59

Lesson 3 - Hydraulics, Part 2

Percolation Links Setup Example: Storm Chamber & Pond

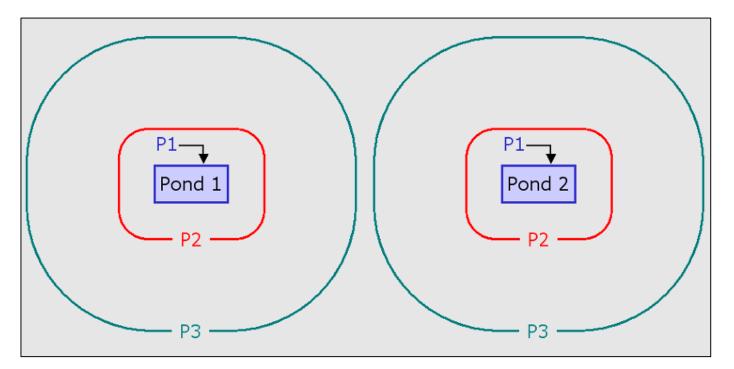


Percolation Links Setup Example: Pond with Retaining Wall

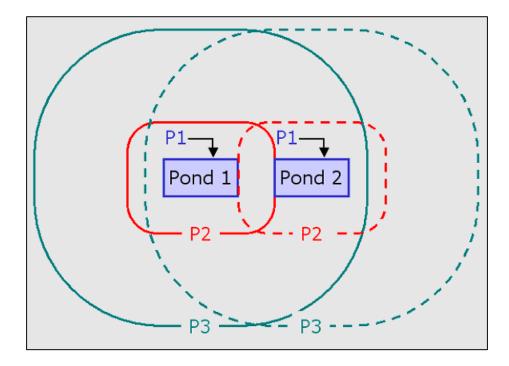


Percolation Links Setup Example: Pond with Retaining Wall

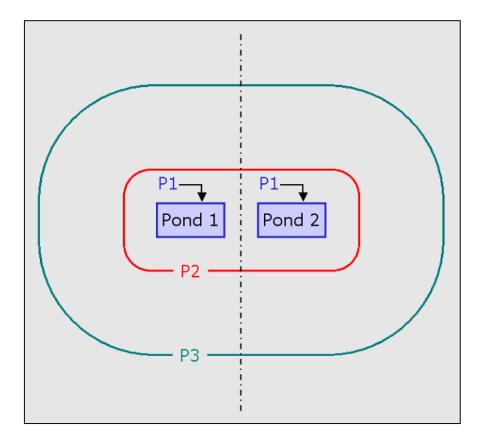
 $P_1* = P_1 \times (h_2 / h_1)$



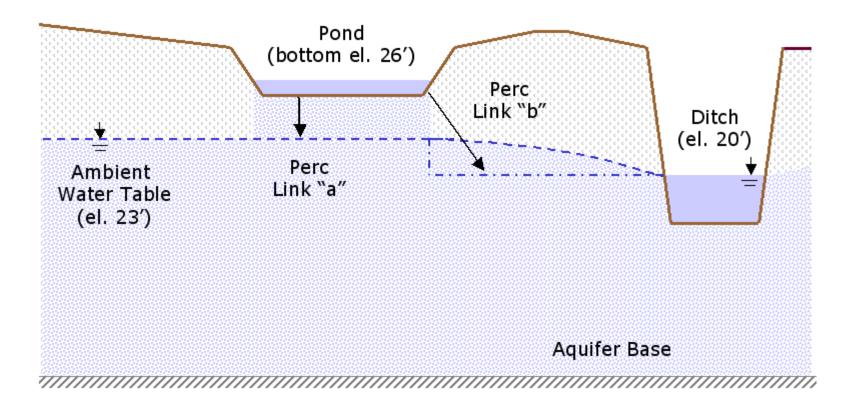
Percolation Links Setup Example: Pond with Retaining Wall


Setup Example: Dual Ponds in Close Proximity

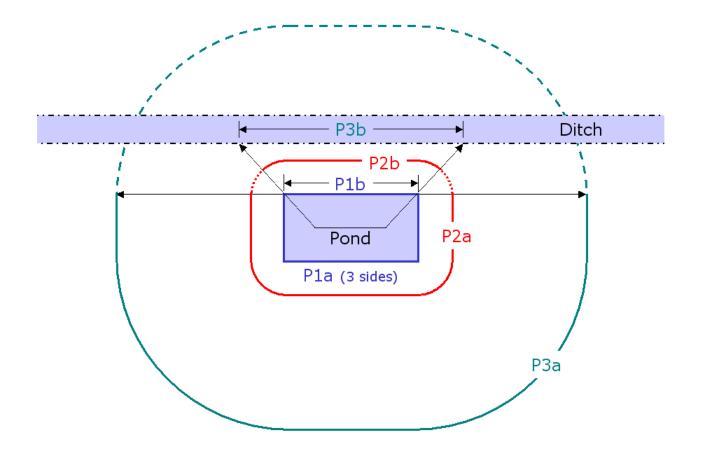
If the computational rings for adjacent ponds do not intersect, then the ponds are independent and no adjustments to the perimeters are required.

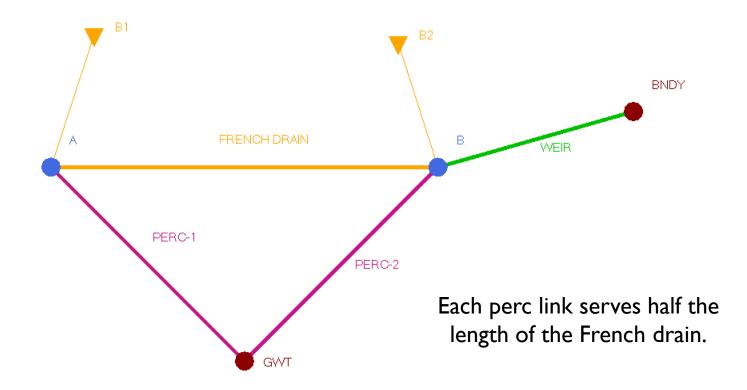

Setup Example: Dual Ponds in Close Proximity

If the computational rings do intersect, then an adjustment to the perimeters is required.



Setup Example: Dual Ponds in Close Proximity


The computational rings must be blended together and then proportioned between the two ponds.


Setup Example: Ponds in Close Proximity to Canal

Setup Example: Ponds in Close Proximity to Canal

Example #I – French Drain with Percolation Nodal Network

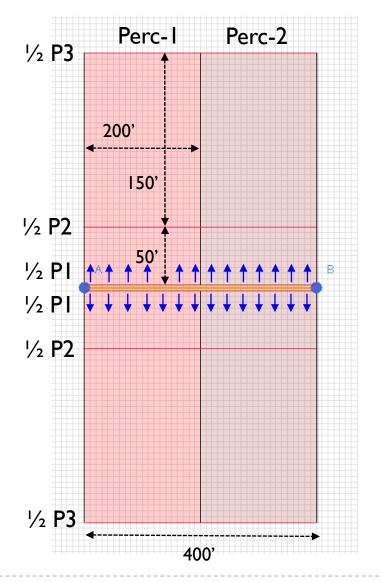
Example #I – French Drain with Percolation

Name	FRENCH DRAIN	Damping Threshold	0
Scenario	French Drain with Perc 🔹	FHWA Culvert Code	1
From Node	A	Entrance Loss Coefficient	0.5
To Node	В	Exit Loss Coefficient	0.1
Link Count	1	Bend Loss Coefficient	0
Flow Direction	Both 💌	Bend Location	0
		Energy Switch	Energy 💌
		Pipe Length	416
		Upstream Pipe Invert	3
Trench Length	400	Downstream Pipe Invert	3
Trench Width	5	Manning's N	0.012
Trench Height	15	Pipe Geometry	Circular 💌
Trench Depth Below Invert	12	Pipe Max Depth	2
Trench Gravel Porosity	0.5		
Comment			*
		Create	Delete

70

Lesson 3 - Hydraulics, Part 2

Example #I – French Drain with Percolation


- Water will percolate from both sides of the trench.
- Each perc link serves 1/2 of the French drain.

Therefore:

$$PI = 2 \times \frac{1}{2} L = 2 \times (\frac{1}{2} \times 400') = 400'$$

PI = P2 = P3

Distance PI to P2 = 50'Distance P2 to P3 = 150'

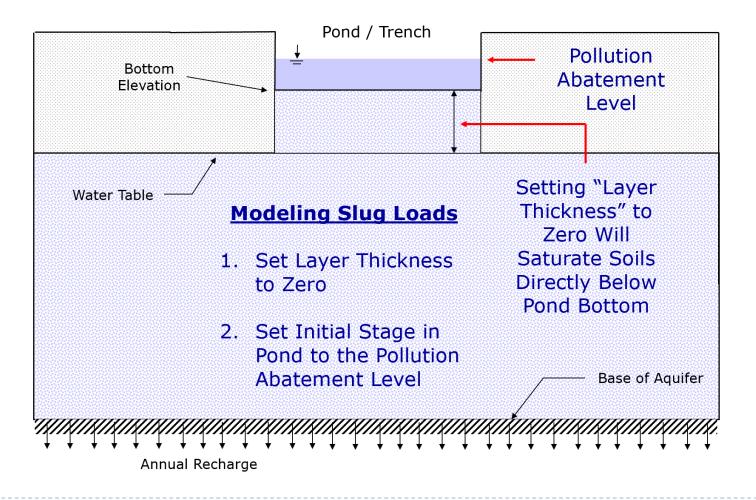
Example #I – French Drain with Percolation Nodal Network

Soil Conductivity: Saturated horizontal conductivity for projects in South Florida are calculated from field tests at 10-foot and 15-foot depths (and sometimes to 20-feet). A weighted average conductivity is needed for ICPR4.

 $K_{10} = 3.7 \times 10^{-4}$ cfs per sqft per foot of head (fps per foot of head) (from 0-ft to 10-ft depth) $K_{15} = 6.1 \times 10^{-4}$ cfs per sqft per foot of head (fps per foot of head) (from 10-ft to 15-ft depth)

Weighted average:

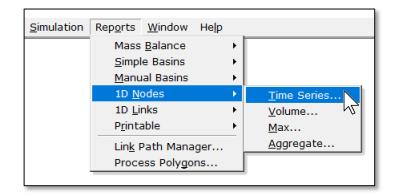
 $K = 4.5 \times 10^{-4}$ cfs per sqft per foot of head (fps per foot of head)

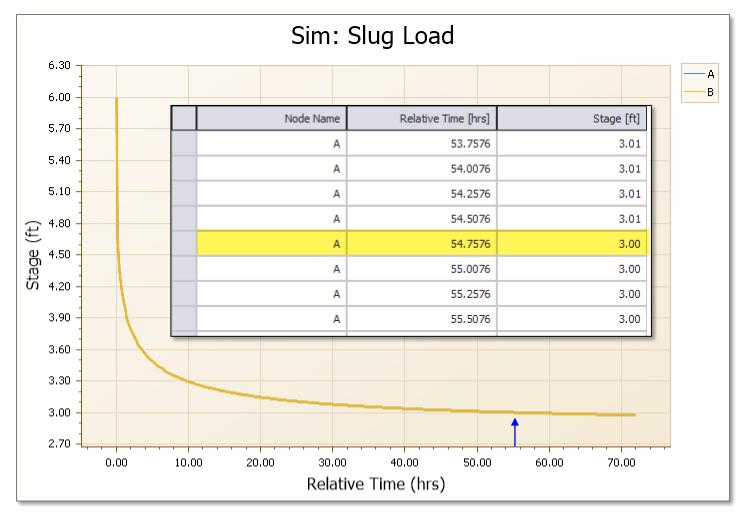

Assuming I-ft of head*: $K_{icpr4} = (4.5 \times 10-4) \times (24 \times 3600) = 38.9 \text{ fpd} (19.45 \text{ fpd}, F.O.S. = 2.0)$

* Perc links in ICPR4 automatically include head and hydraulic gradient components.

Example #I – French Drain with Percolation Perc Link Data Form

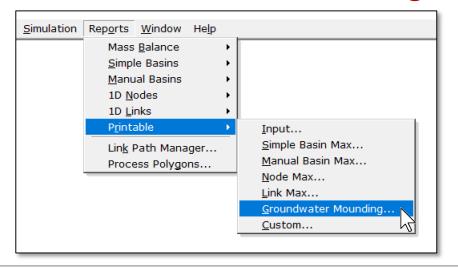
Flow Direction	Both 💌
Aquifer Base Elevation	-9.1
Water Table Elevation	2.75
Annual Recharge Rate	0
Horizontal Conductivity	19.45
Vertical Conductivity	9.73 $K_v = \frac{1}{2} K_h$
Fillable Porosity	0.25
Layer Thickness	0 GWT > BTM of Trench


Surface	Surface Area Option		Specified 🔻
Bott	tom Elevation	-9	bottom of trench
	Surface Area	0.022	296 = (5×200)/43560
Vertical Flow	v Termination	Horiz	ontal Flow Algorithm 🔻
	Perimeter 1	400	
	Perimeter 2	400	PI = P2 = P3 = 2(1/2)L
	Perimeter 3	400	
Dista	nce P1 to P2	50	
Distance P2 to P3		150	
# of (Cells P1 to P2	10	
# of Cells P2 to P3		15	

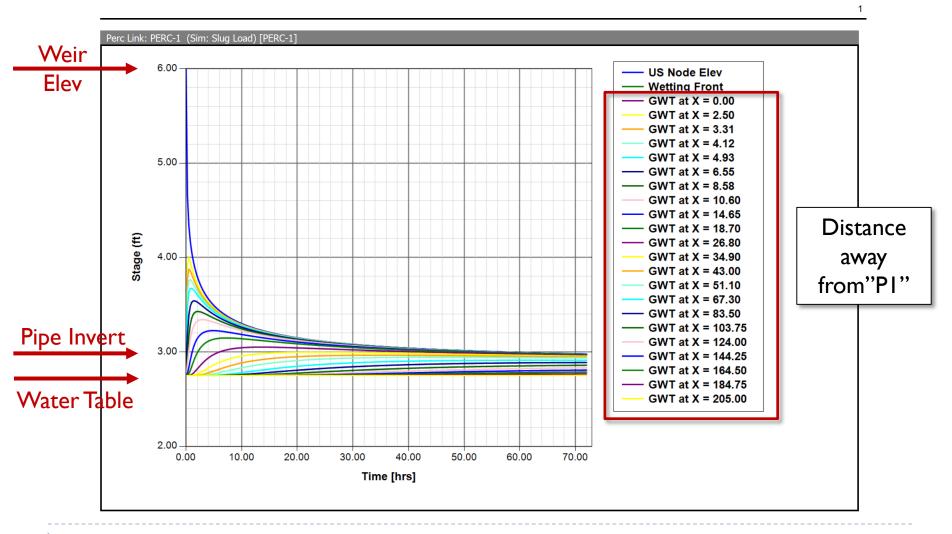

- Initial stage at the weir overflow elevation of 6' (pollution abatement volume)
- No rainfall
- Recovery to elevation 3' must occur by hour 72

Name	Α		
Scenario	French Drain with Perc 🔹		
Туре	Stage/Area 🔹		
Base Flow	0		
Initial Stage	6		
Warning Stage	7.5		

Name	В		
Scenario	French Drain with Perc 🔹		
Туре	Stage/Area 🔻		
Base Flow	0		
Initial Stage	6		
Warning Stage	7.5		


Report Chart	Simulation Selection Item Selection
Type Superimpose 1D nodes Y Parameter Selection X Parameter Relative Time Time Step Triggers/Levels ✓ Stage Warning Stage Surface Area Base Inflow Rate Base Outflow Rate Basin Outflow Rate Basin Outflow Rate External Inflow Rate Link Inflow Rate Link Outflow Rate Total Inflow Rate Total Outflow Rate	→ Scenarios → French Drain no Perc → French Drain with Perc → Simulations → Slug Load

77

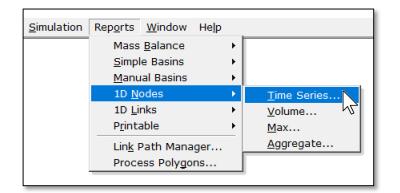

Lesson 3 - Hydraulics, Part 2

Slug Load

🛩 Custom Reports

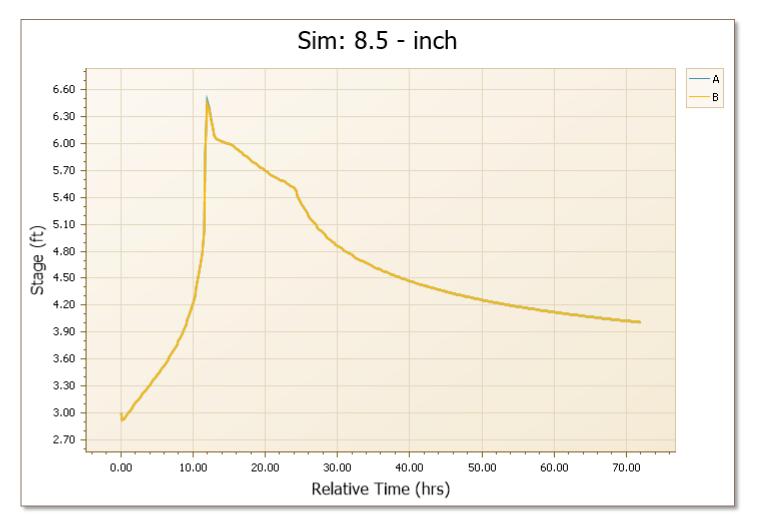
Title Report Sections	Item Selection	Report Sheet Selection	Simulation Selection
Percolation Link	Item Selection Item Selection Scenarios French Drain no Perc PERC-1 PERC-2	 Input Report Min/Max Conditions Report Min/Max Conditions Report (wit Flow Chart Average Velocity Chart Downstream Velocity Chart Upstream Velocity Chart Flow % Exceedance Chart Flow Raster Chart GW Mounding Chart 	Simulation Selection

Example #1 – French Drain with Percolation 8.5" Storm


- Initial stage at the pipe invert elevation of 3'
- 8.5" rainfall in 24 hours (FLMOD distribution)

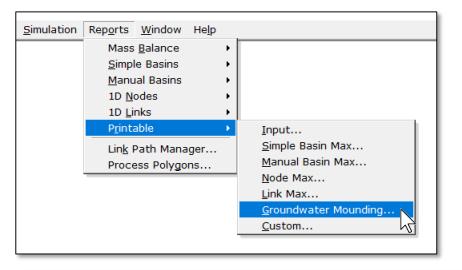
Name	Α		Simple / Manual Basin Rainfall Opt.	Global
Scenario	French Drain with Perc 🔹			
Туре	Stage/Area 🔻		Rainfall Name	~FLMOD
Base Flow	0		Rainfall Amount	8.5
Initial Stage	3		Storm Duration	24
Warning Stage	7.5			

Node Data Form

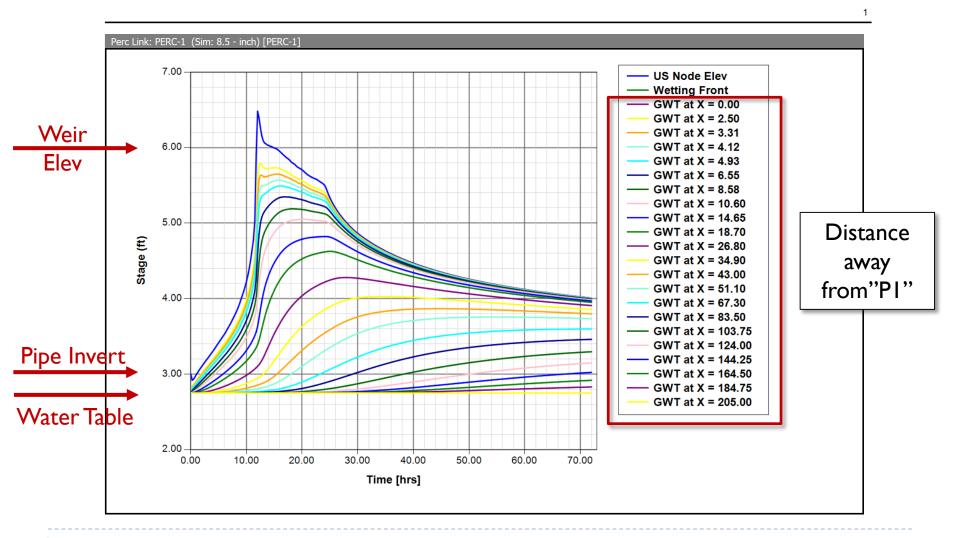

Simulation Manager

Example #I – French Drain with Percolation 8.5" Storm

Report Chart		Simulation Selection Item Selection
Type Superimpose 1D nodes X Parameter Relative Time	Y Parameter Selection Time Step Triggers/Levels Stage Warning Stage Surface Area Base Inflow Rate Base Outflow Rate Basin Inflow Rate External Inflow Rate External Outflow Rate Link Inflow Rate Link Outflow Rate Total Inflow Rate Total Inflow Rate Total Outflow Rate	Image: Scenarios Image: French Drain no Perc Image: French Drain with Perc Image: Simulations Image: Simulations Image: Slug Load


Example #I – French Drain with Percolation 8.5" Storm

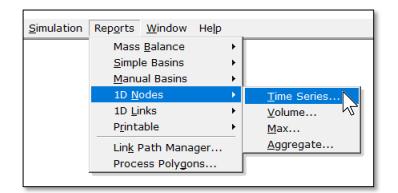
82


Lesson 3 - Hydraulics, Part 2

8.5" Storm

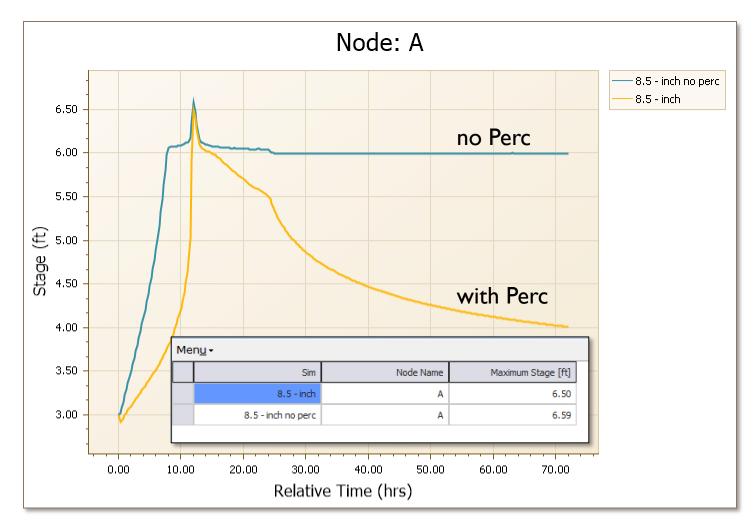
イ Custom Reports			
Title			
Report Sections	Item Selection	Report Sheet Selection	Simulation Selection
Percolation Link	Item Selection ▶ Scenarios French Drain no Perc → French Drain with Perc → PERC-1 → PERC-2	 Input Report Min/Max Conditions Report Min/Max Conditions Report (with Flow Chart Average Velocity Chart Downstream Velocity Chart Upstream Velocity Chart Flow % Exceedance Chart Flow Raster Chart GW Mounding Chart 	Simulation Selection Scenarios French Drain no Perc French Drain with Perc 8.5 - inch Slug Load

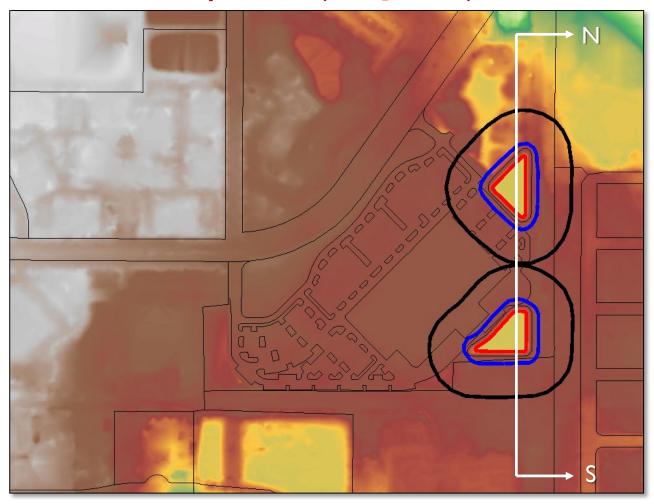
Example #I – French Drain with Percolation 8.5" Storm

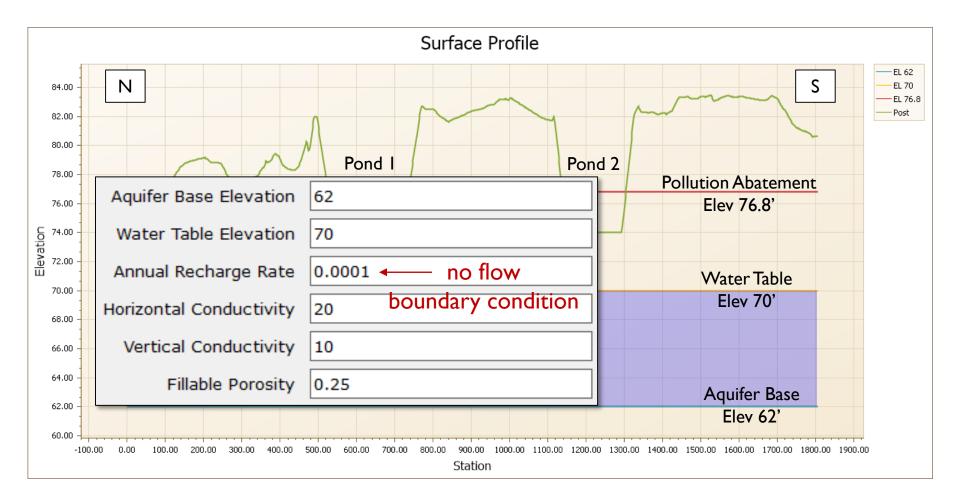

Lesson 3 - Hydraulics, Part 2

Example #1 – French Drain with Percolation 8.5" Storm

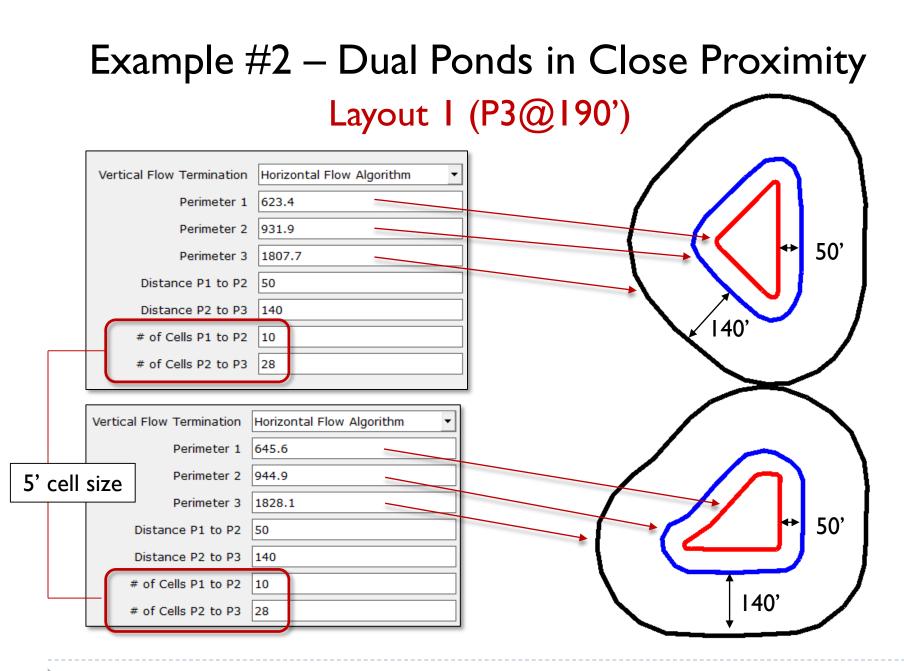
• Turn perc links off and rerun the 8.5" storm

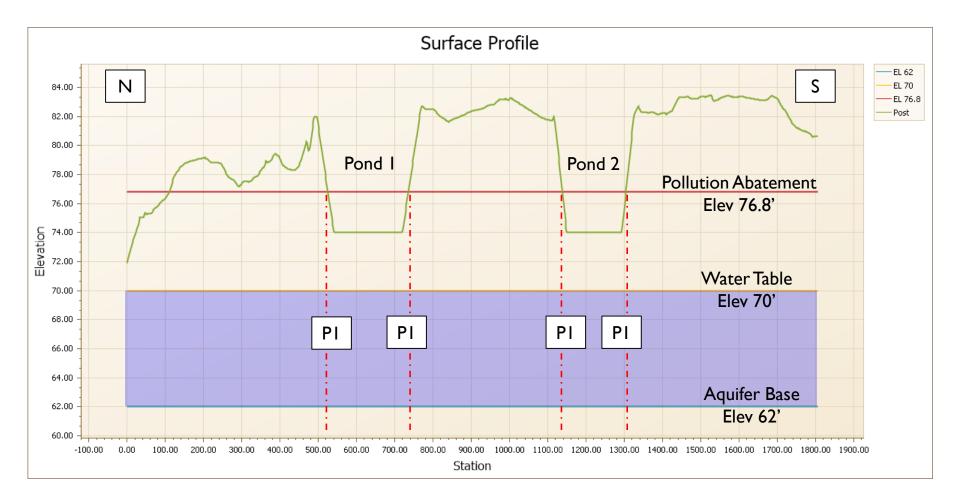

Name		PERC-1
Scenario		French Drain with Perc 🔹
	From Node	A
	To Node	GWT
	Link Count	1
	Flow Direction	None 💌
Aquifer	Base Elevation	-9.1
Water	Table Elevation	2.75

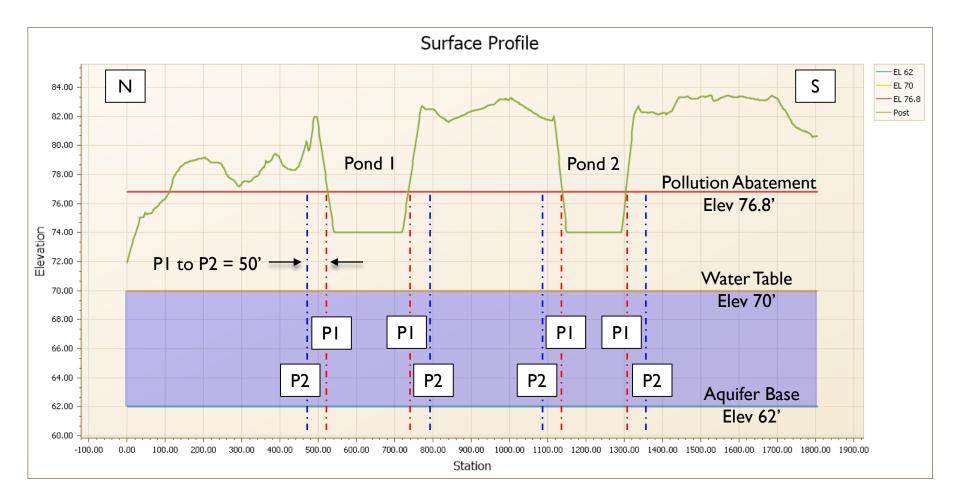

Example #I – French Drain with Percolation 8.5" Storm

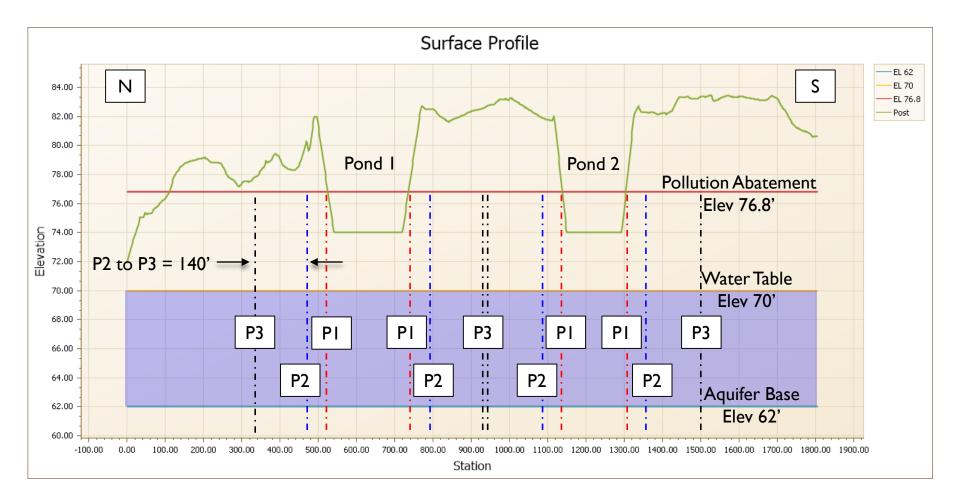


Report Chart		Simulation Selection	Item Selection
Type Superimpose sims X Parameter Relative Time	Y Parameter Selection Time Step Triggers/Levels Stage Warning Stage Surface Area Base Inflow Rate Base Outflow Rate Basin Inflow Rate Basin Outflow Rate External Inflow Rate Link Inflow Rate Link Outflow Rate Total Inflow Rate Total Inflow Rate Total Outflow Rate	→ Scenarios → French Drain no Perc → French Drain with Perc → Simulations → 8.5 - inch → 8.5 - inch no perc → Slug Load	A B BNDY GWT

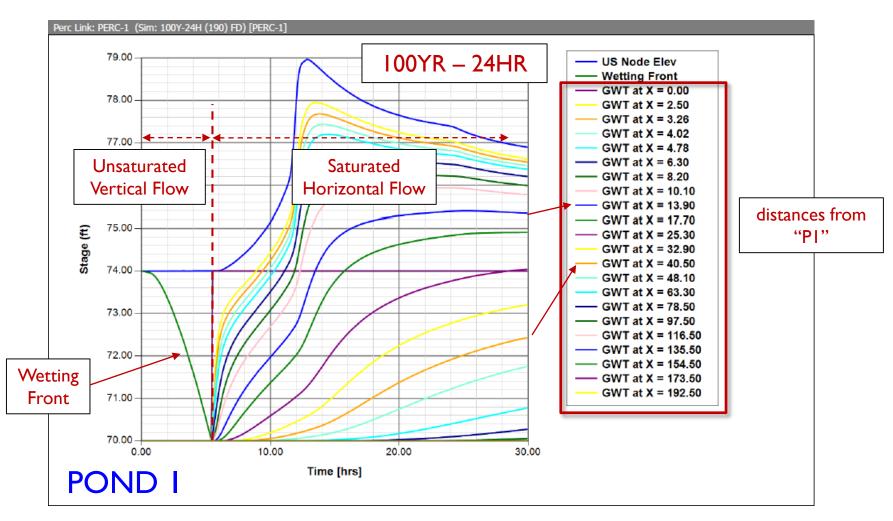

Example #I – French Drain with Percolation 8.5" Storm

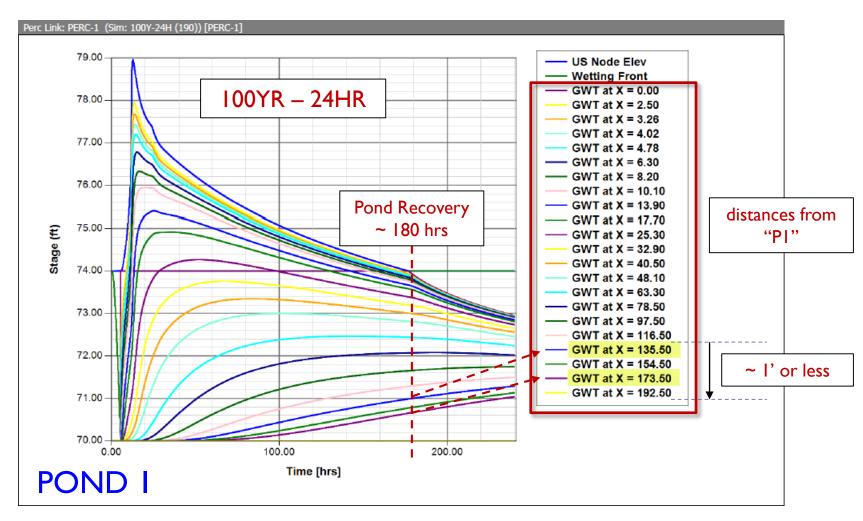


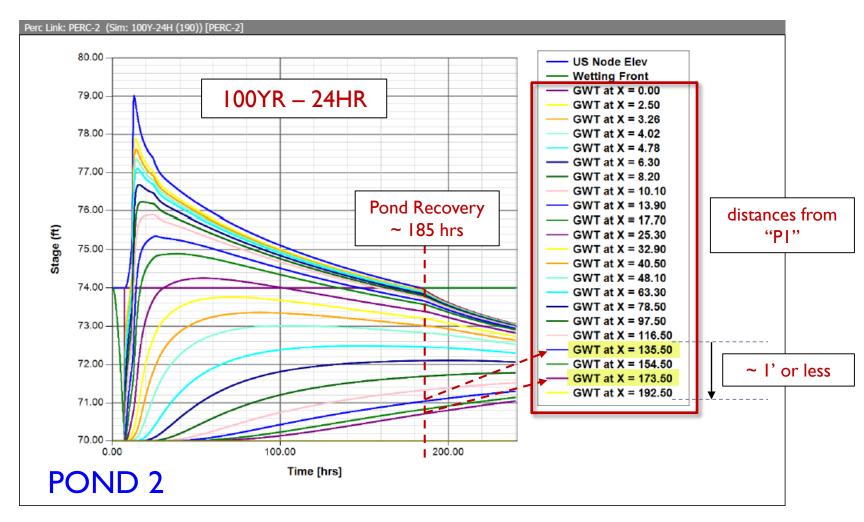




© 2019, Streamline Technologies, Inc.

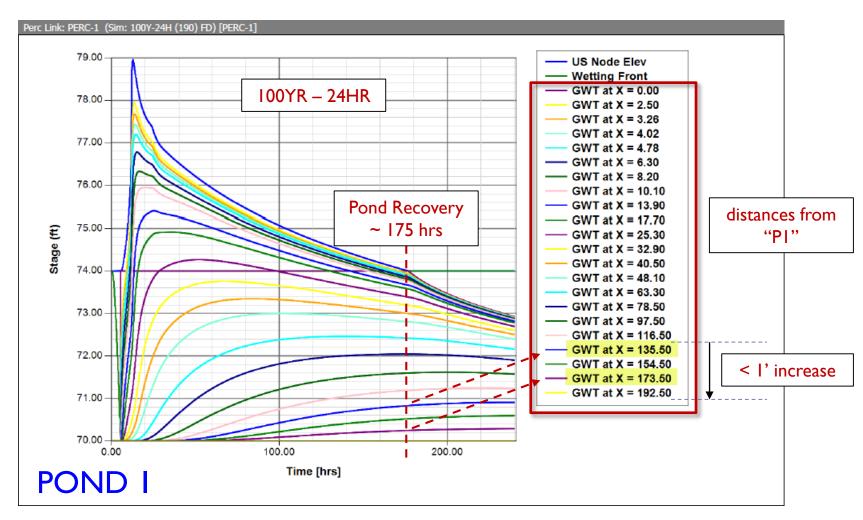


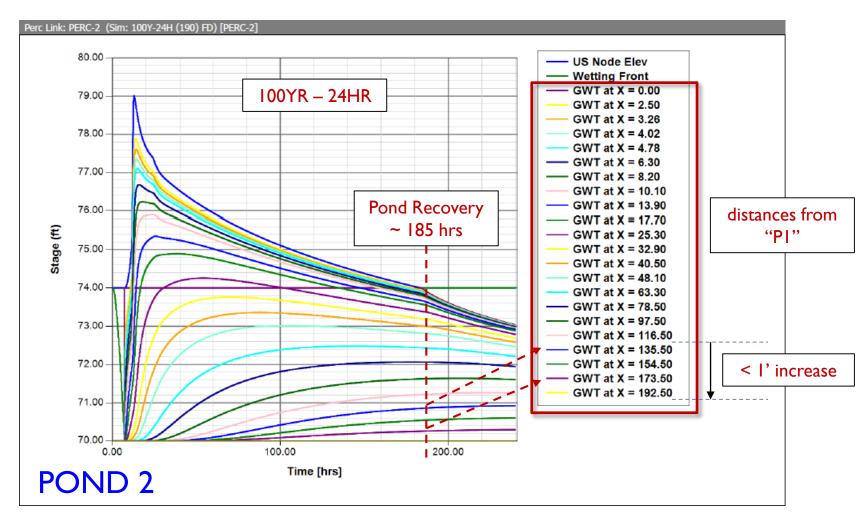




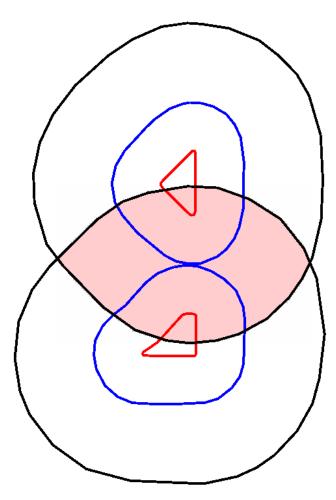
<u>S</u> imulation	Rep <u>o</u> rts <u>W</u> indow H	le <u>l</u> p	
	Mass <u>B</u> alance <u>S</u> imple Basins <u>M</u> anual Basins 1D <u>N</u> odes 1D <u>L</u> inks) 	
	P <u>rintable</u> Lin <u>k</u> Path Manage Process Polygons		<u>I</u> nput <u>S</u> imple Basin Max <u>M</u> anual Basin Max
			<u>N</u> ode Max Link Max Groundwater Mounding Custom

Report Sections	Item Selection	Report Sheet Selection	Simulation Selection
Percolation Link	Item Selection	 Input Report Min/Max Conditions Report (wit Flow Chart Average Velocity Chart Downstream Velocity Chart Upstream Velocity Chart Flow % Exceedance Chart Flow Raster Chart GW Mounding Chart 	nulation Selection Scenarios SS - Ponds & Perc (190) 010Y_03H (190) 010Y_03H (190) 025Y-24H (190) 025Y-24H (190) 100Y-24H (190) 100Y-24H (190) 00Y-24H (190) 025Y-24H (190) 025Y-24H (190) 00Y-24H (190)

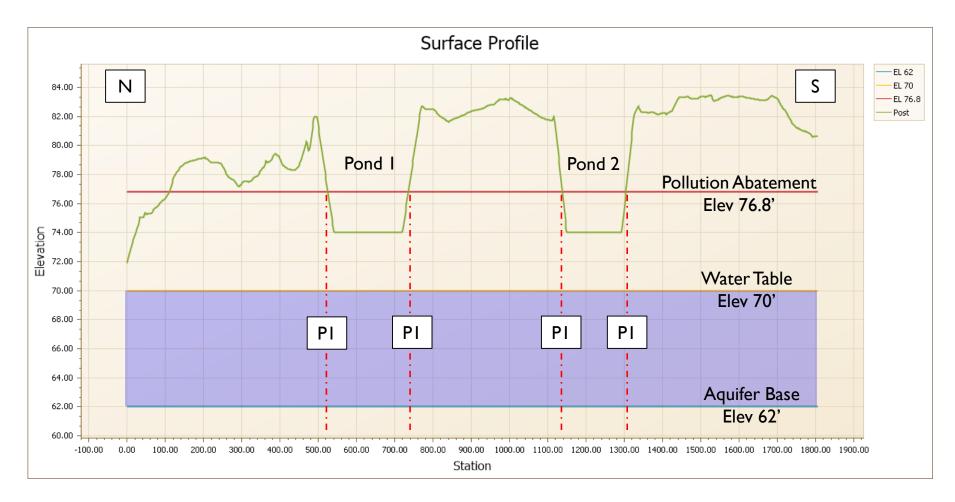


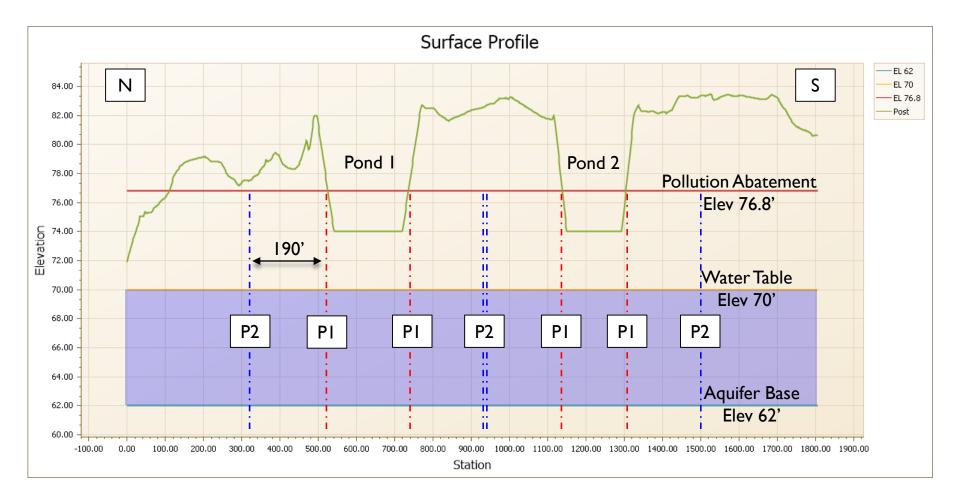


98

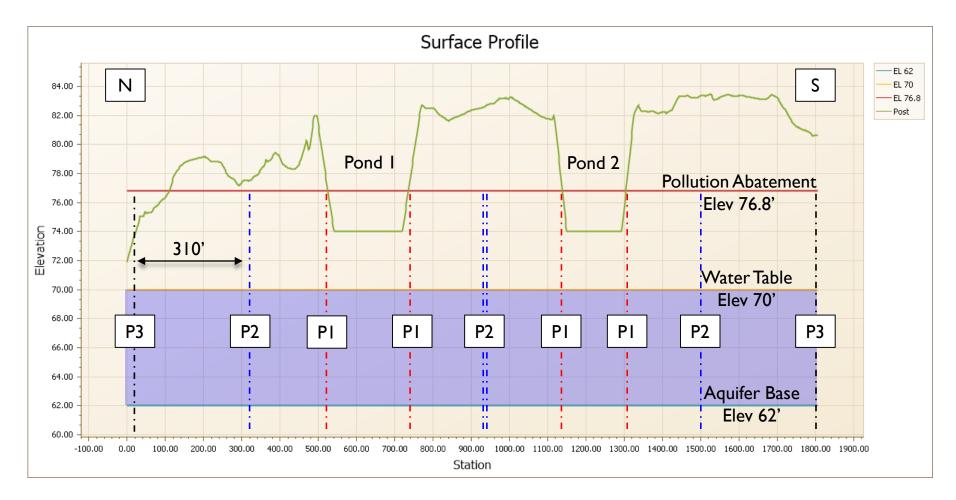

Lesson 3 - Hydraulics, Part 2

Aquifer Base Elevation	62
Water Table Elevation	70
Annual Recharge Rate	o ← P3=WT Elev
Horizontal Conductivity	20
Vertical Conductivity	10
Fillable Porosity	0.25
Layer Thickness	4

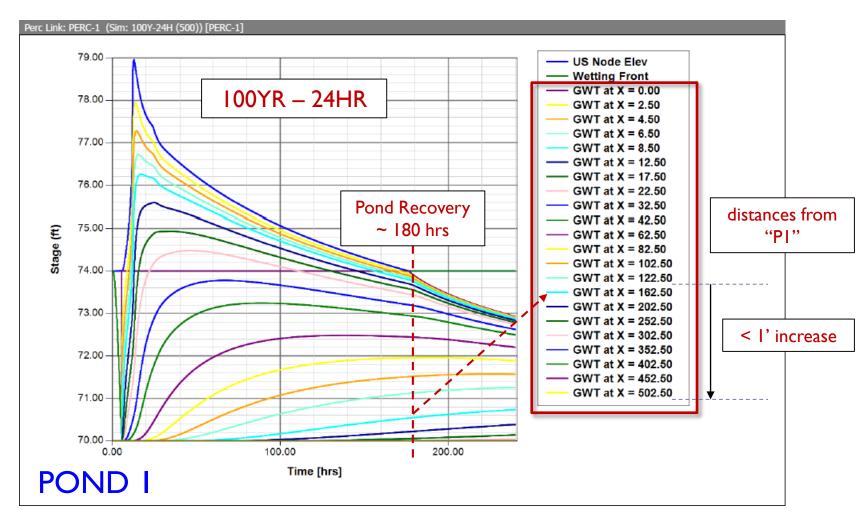


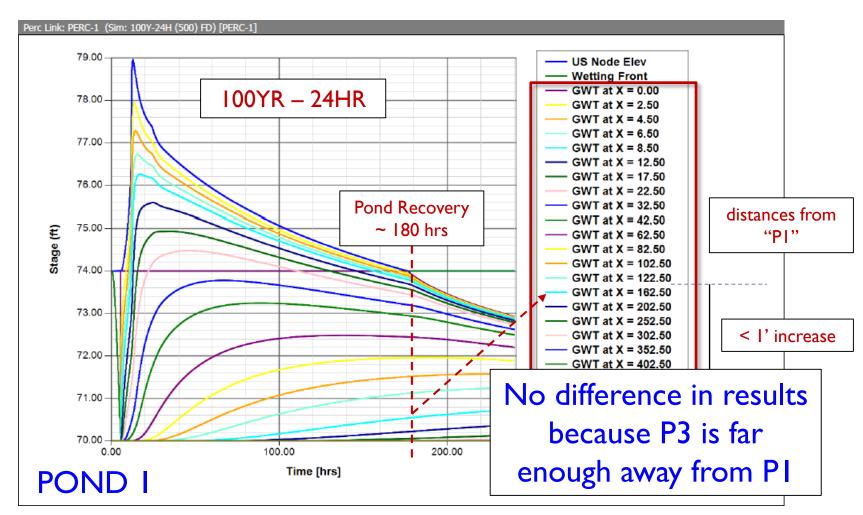


103 © 2019, Streamline Technologies, Inc.

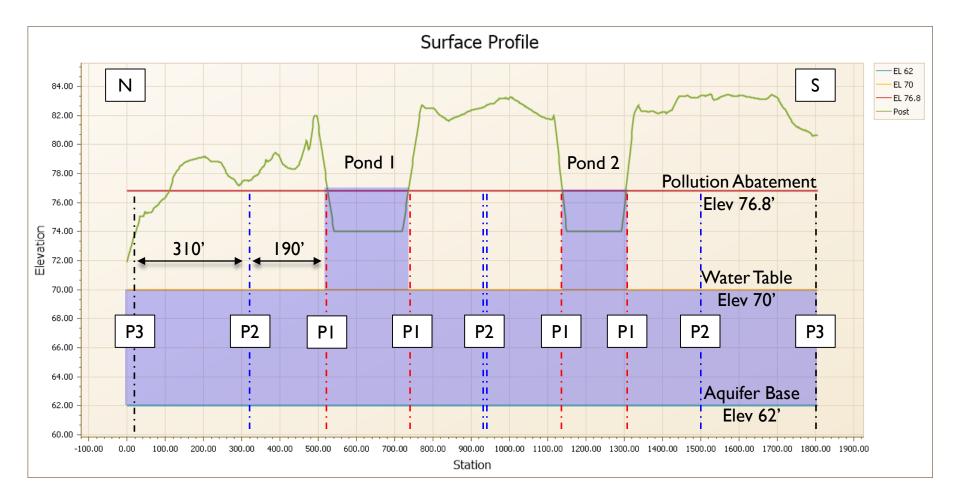

Lesson 3 - Hydraulics, Part 2

	-			
		Vertical	Flow Termination	Horizontal Flow Algorithm
			Perimeter 1	623.4
			Perimeter 2	1807.7
			Perimeter 3	2514
		0	istance P1 to P2	190
		0	istance P2 to P3	310
		#	of Cells P1 to P2	38
		#	of Cells P2 to P3	62 <u>310</u> , 190,
		Vertical	Flow Termination	Horizontal Flow Algorithm
		Vertical	Flow Termination Perimeter 1	Horizontal Flow Algorithm
5'	Cel			
5'	cel	vertical	Perimeter 1	645.6 1828.1 2569
5'	cel	l size	Perimeter 1 Perimeter 2	645.6
5'	cel	l size	Perimeter 1 Perimeter 2 Perimeter 3	645.6 1828.1 2569
5'	cel	l size	Perimeter 1 Perimeter 2 Perimeter 3 Distance P1 to P2	645.6 1828.1 2569 190


© 2019, Streamline Technologies, Inc.


© 2019, Streamline Technologies, Inc.

107

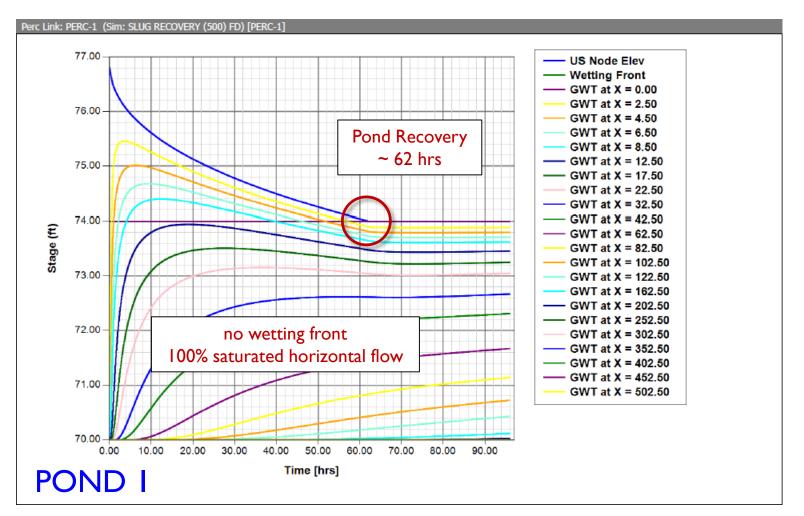

Lesson 3 - Hydraulics, Part 2

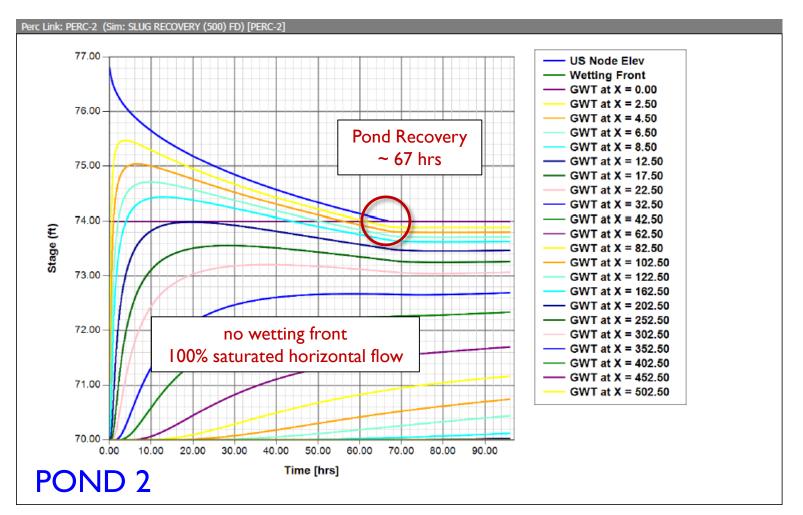
Example #2 – Dual Ponds in Close Proximity Layout 2 (P3@500') P3 = WT Elev

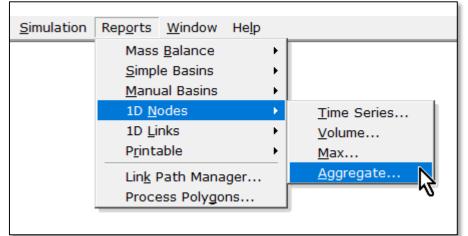
109

110 © 2019, Streamline Technologies, Inc.

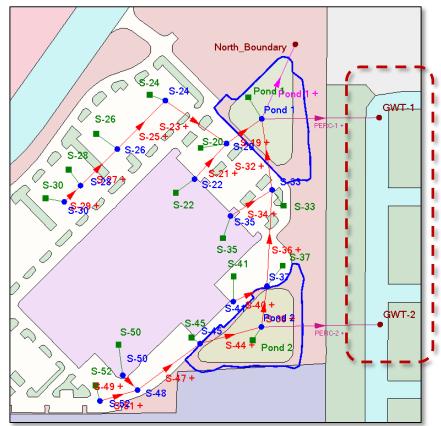
Aquifer Base Elevation	62
Water Table Elevation	70
Annual Recharge Rate	0.0001
Horizontal Conductivity	20
Vertical Conductivity	10
Fillable Porosity	0.25
Layer Thickness	0

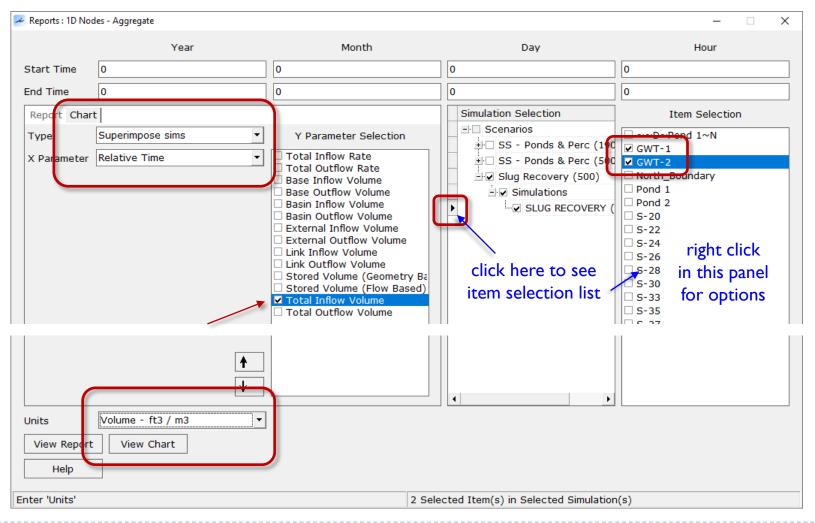

	Men <u>u</u> - 📰 🏢 💽 🧮 Az 🍇 🗞 🏋 🕜 🔢							
+ 🕺 🗶 🖺 🦂	F b							
Name	Scenario 🛛 🗠	Node Type	Base Flow	Initial Stage	Warning Stag			
North_Boundary	Slug Recovery (500)	Time/Stage	0	0				
Pond 1	Slug Recovery (500)	Stage/Area	0	76.8	80			
Pond 2	Slug Recovery (500)	Stage/Area	0	76.8	80			
S-22	Slug Recovery (500)	Stage/Area	0	79	83			
S-33	Slug Recovery (500)	Stage/Area	0	76.8	81			
S-35	Slug Recovery (500)	Stage/Area	0	79	83			
S-37	Slug Recovery (500)	Stage/Area	0	76.8	81			
S-41	Slug Recovery (500)	Stage/Area	0	78.35	83			
S-45	Slug Recovery (500)	Stage/Area	0	76.8	82			
S-48	Slug Recovery (500)	Stage/Area	0	77	82			
S-50	Slug Recovery (500)	Stage/Area	0	79	83			
S-52	Slug Recovery (500)	Stage/Area	0	77.5	81			
S-30	Slug Recovery (500)	Stage/Area	0	78.25				
S-28	Slug Recovery (500)	Stage/Area	0	77.75				
S-26	Slug Recovery (500)	Stage/Area	0	77.15				
S-24	Slug Recovery (500)	Stage/Area	0	76.8				
S-20	Slug Recovery (500)	Stage/Area	0	76.8	81			
GWT-1	Slug Recovery (500)	Time/Stage	0	0				
GWT-2	Slug Recovery (500)	Time/Stage	0	0				
lain Grid								
Enter 'Name' 57 Node(s)								

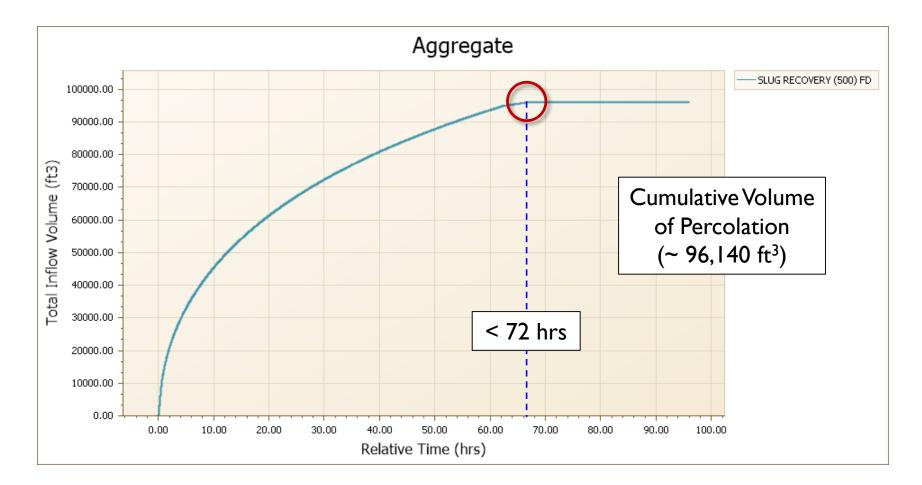

Set initial stages to elevation 76.8' (pollution abatement) or higher, including the storm sewer system


112

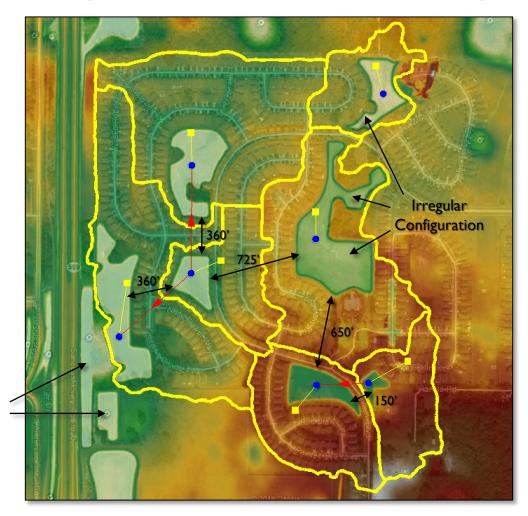
	Name	SLUG RECOVERY (500) FD]	Scenario	Slug Recovery (500)
Γ	General O Itput Time Increments Res	ources & Lookup Tables Tolerances	& Options		
	Run Mode	Normal 🔹			
		Year	Month	Day	Hour
	Start Time	0	0	0	0
	End Time	0	0	0	96
				· · · · · · · · · · · · · · · · · · ·	


Name SLUG RECOVERY (50	0) FD	Scenario	Slug Recovery (500)
General Output Time Increments Resources & Lookup Tab	oles Tolerances & Options		
Time Marching SAOR		Intial Abstraction Recovery Time	24
Maximum Iterations 6			
Over-Relaxation Weighting Factor 0.5			
dZ Tolerance 0.001		Simple / Manual Basin Rainfall Opt.	No Rainfall
Maximum dZ 1			
Link Optimizer Tolerance 0.0001			





"Aggregate" to add node volumes

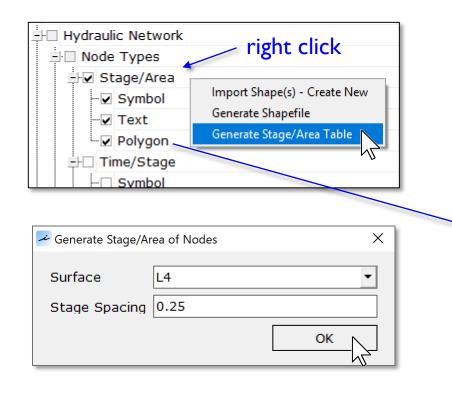


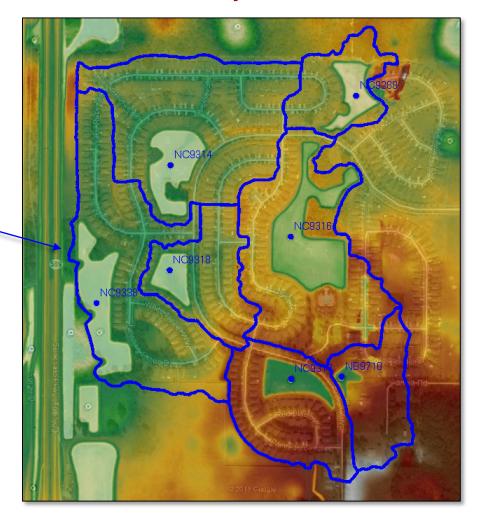
117

118

other ponds in close proximity

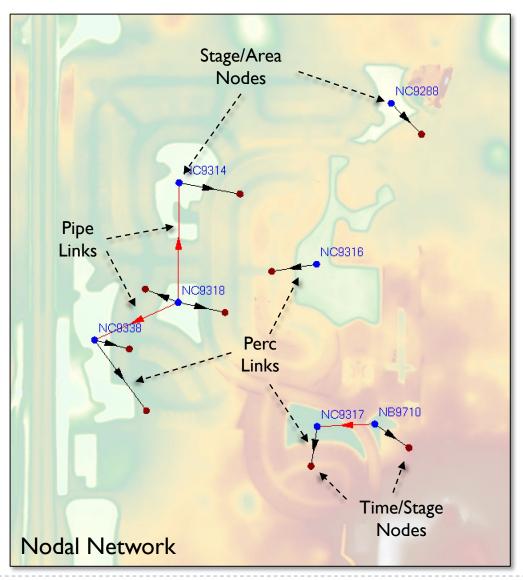
119




Basins

Soil Hydrologic Group

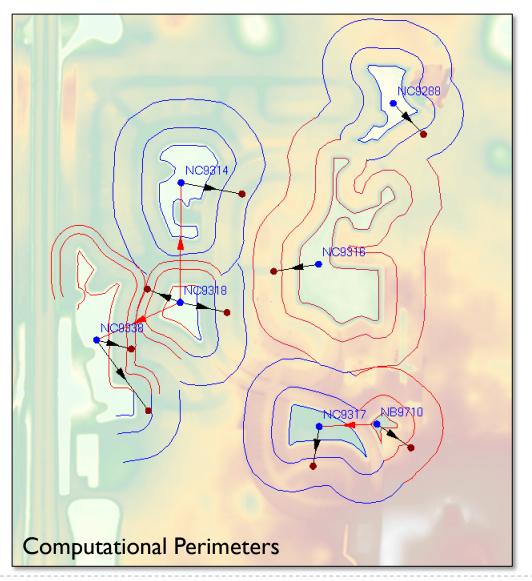
Hydraulic Netw Hode Types H Link Types Manual Basin	rork	right click						005289	
Reference Elen	1	Import Shape(s) - Mer	ge Existing	Process	s Basin Polygons	1 125	_ C9818		X
Map Layers		CSV Import			busin'n orygons				
Background Images		CSV Export		Basin I	Map Layer		L4-BASINS		-
5 5		Generate Shapefile Process Polygons	`	Land C	Cover Zone Map Layer	[L4-LU		•
Name	C9316		Manual Basin	Sub-Basin Edit					д X
Scenario	L4	•	+ 🗶 🗶 🖗	4 🥴 🛱					
Node	NC9316		Area		Land Cover Zone	Soil Zo	ne	Rainfall Name	
Hydrograph Method	NRCS Unit	t Hydrograph 🔻		18.876492	HDR RECREATIONAL	A			
					OPEN SPACE	A			
Infiltration Method	Curve Nu	mber 🗾			POND BOTTOM	А			
Time of Concentration	15			3.725826	WOODED	Α			
Max Allowable Q	0								
Time Shift	0								
Unit Hydrograph	UH256								
Peaking Factor	256								
Comment		<u> </u>							
Create	Dele	ete							

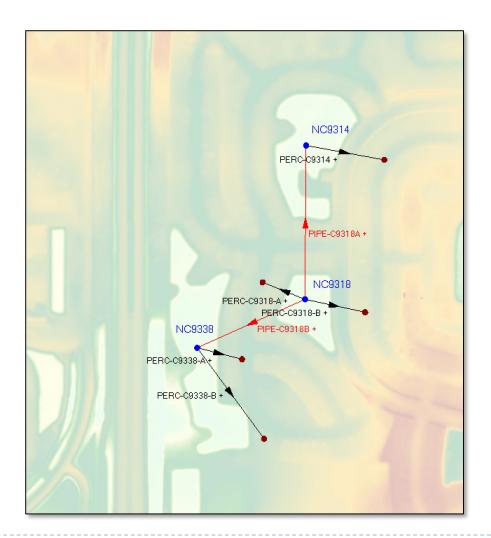


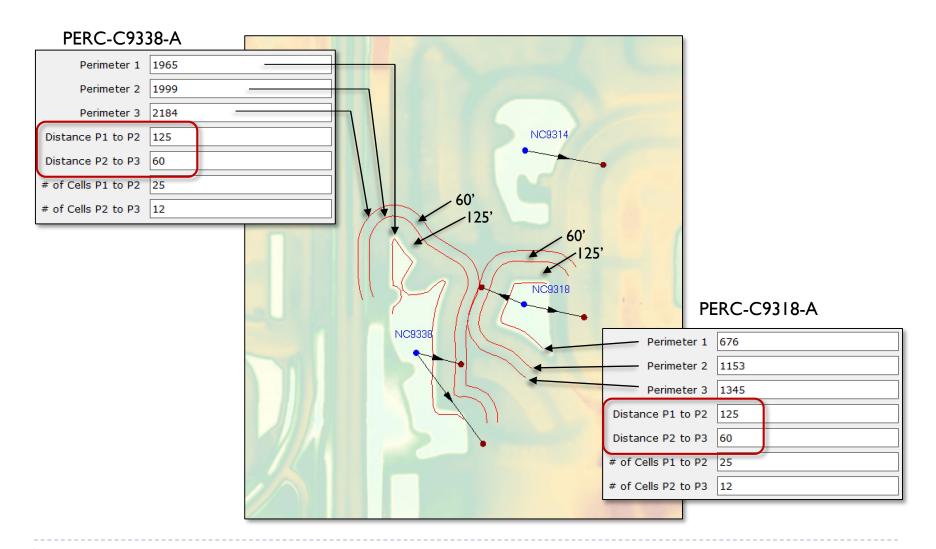
	ypes ge/Area ymbol ext olygon Fight Clic Import Shape(s) - Creat Generate Shapefile Generate Stage/Area Ta	te New				
Name	NC9316		Node Point Edit			□ 7 X
Scenario	L4	•	+ 🗶 🗶 🖻 ዳ 🗎			
Туре	Stage/Area	-	Stage		Area	<u> </u>
				57.25		0.908517
Base Flow	0			57.5		3.110078
Initial Stage	57.25			57.75		4.946051 6.029614
Warning Chase	62.2			58.25		6.67298
Warning Stage	63.3			58.5		6.982897
				58.75		7.164256
Comment	P1 Area (acres): 6.8471			59		7.283058
connerie				59.25		7.415634
				59.5		7.539601
				50.75		7.652663

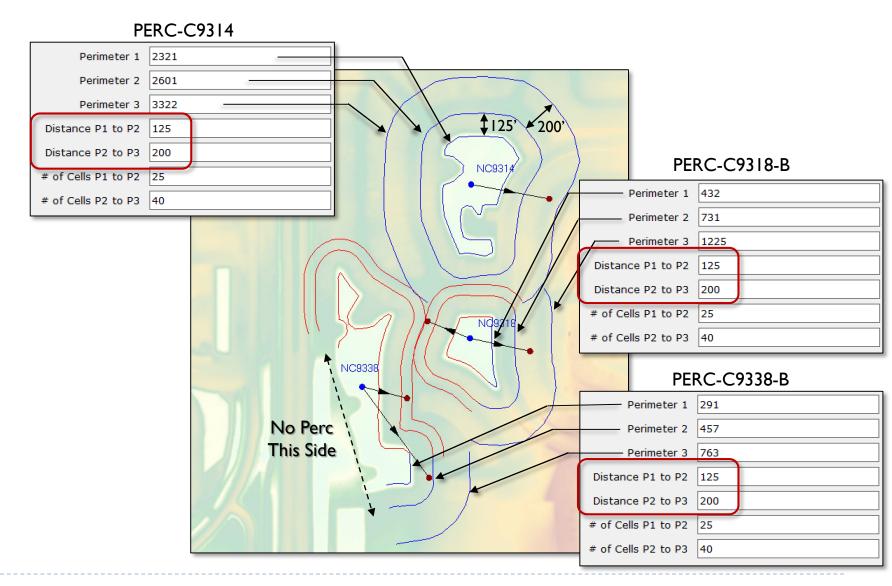
Mapping Tab	oles So	enarios <u>H</u> ydrology 10	Hydraulics				
	<u>E</u> xterna R <u>o</u> ughn	ry Stage Sets al Hydrograph Sets ess Sets					
		🛩 Impervious Set Data					- • ×
	CSV I	Men <u>u</u> - 📑 🧮 A _Z	🗄 🛞 <u>%</u> 🕐				
	CSV E	+ 🗶 🗶 🔒 😩	₽. 				
		Land Cover Zone	% Impervious	% DCIA	% Direct	Ia Impervious	Ia Pervious
		▶ HDR	65	45	0	0	0
		OPEN SPACE	0	0	0	0	0
		POND BOTTOM	0	0	100	0	0
		RECREATIONAL	50	25	0	0	0
		RURAL	10	0	0	0	0
		WOODED	0	0	0	0	0
		Extract					
		Se: Impervious					
				1 Ir	npervious Set(s)		

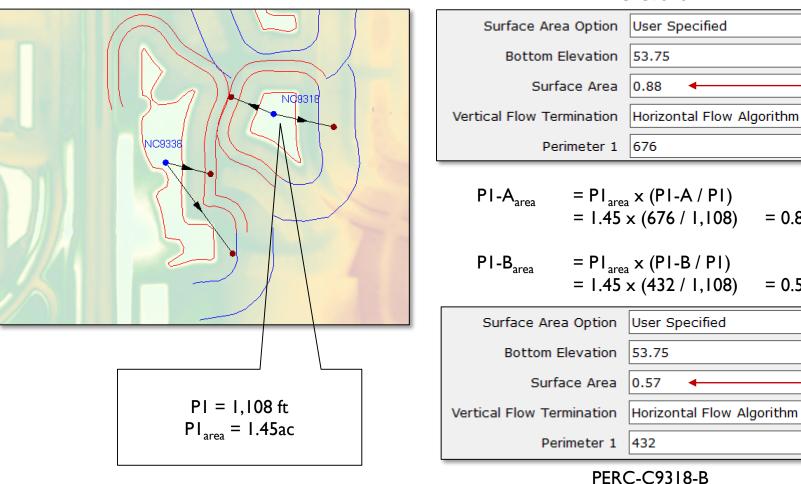
<u>Mapping</u> Ta <u>b</u> les S <u>c</u> ena	arios <u>H</u> ydrology 1D Hydraulics R	eference <u>E</u> lement	s	
Boundary	4 Cupie Number Set Data			
External H		0		
Roughnes		•		<u>u</u>
<u>R</u> ainfall Ex				
<u>I</u> mperviou	Land Cover Zone	Soil Zone	Curve N	umbor
CSV I <u>m</u> po	HDR	A	Curven	39
CSV Expo	HDR	D		80
	OPEN SPACE	A		39
	OPEN SPACE			80
	POND BOTTOM	A	CNs are for	39
	POND BOTTOM	D		80
	RECREATIONAL	A	pervious areas o	only 39
	RECREATIONAL	D		80
	RURAL	A		39
	RURAL	D		80
	WOODED	А		30
	WOODED	D		77
	Extract			
	Set Curve Number			
		1	. Curve Number Set(s)	//

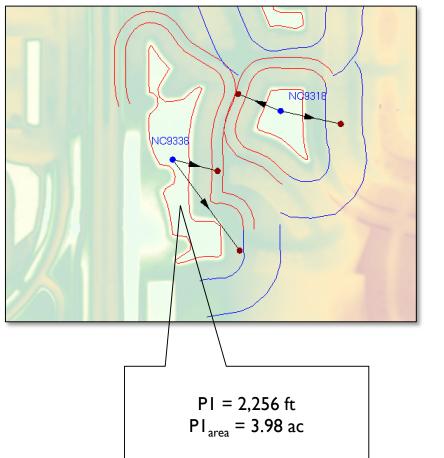



Typical Aquifer Parameters

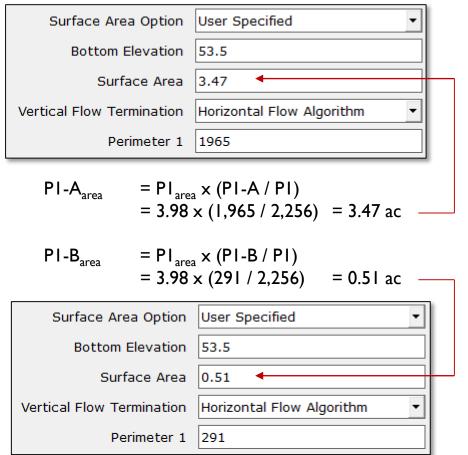

Aquifer Base Elevation	24.5		
Water Table Elevation	48.3		
Annual Recharge Rate	0.0001	•	-
Horizontal Conductivity	18.7		
Vertical Conductivity	12.5		
Fillable Porosity	0.2		
Layer Thickness	5.2		


all parameters except "Annual Recharge Rate" vary for each perc link

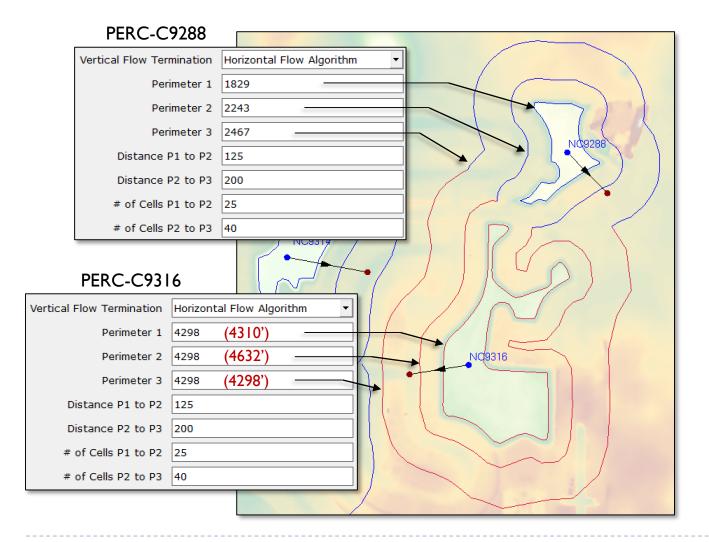

This setting creates a "no flow" boundary condition at perimeter P3, a typical setting for ponds in close proximity to other ponds.



PERC-C9318-A


Ŧ

 $= 0.88 \, \mathrm{ac}$


= 0.57 ac

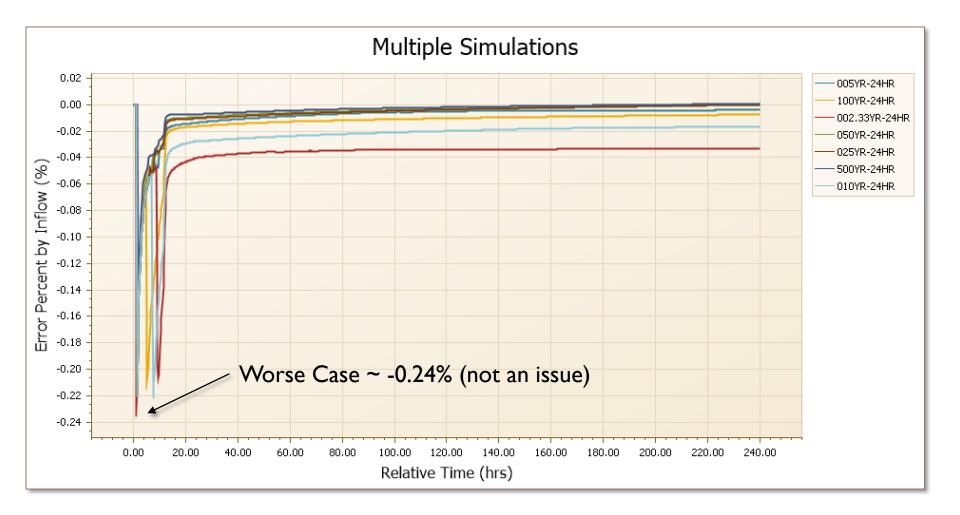


PERC-C9338-A

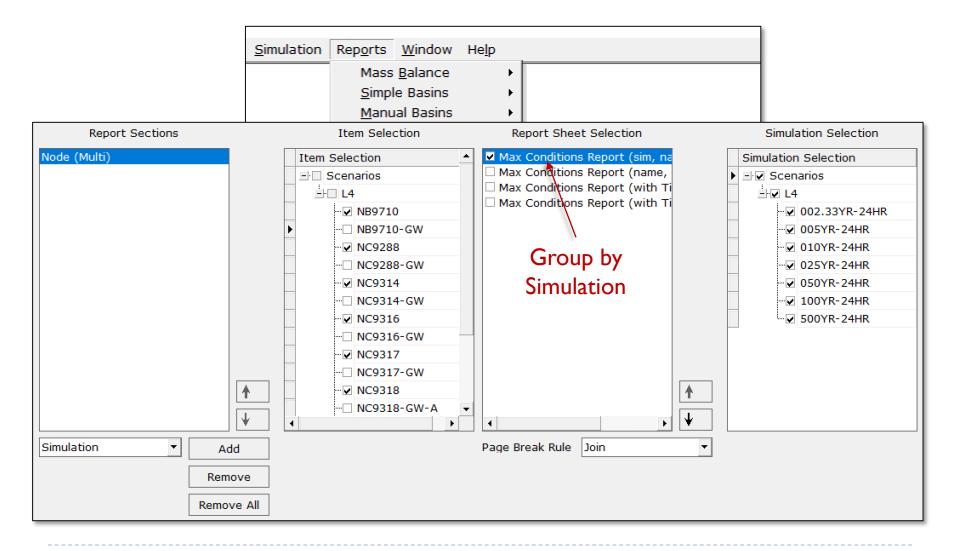
PERC-C9338-B

135

<u>E</u> lements	<u>S</u> imulation	Rep <u>o</u> rts	<u>W</u> indow	He <u>l</u> p		
	<u>S</u> imulati	on Manag	er			
	Simulation <u>E</u> xecution					
	<u>C</u> opy Resource Files					

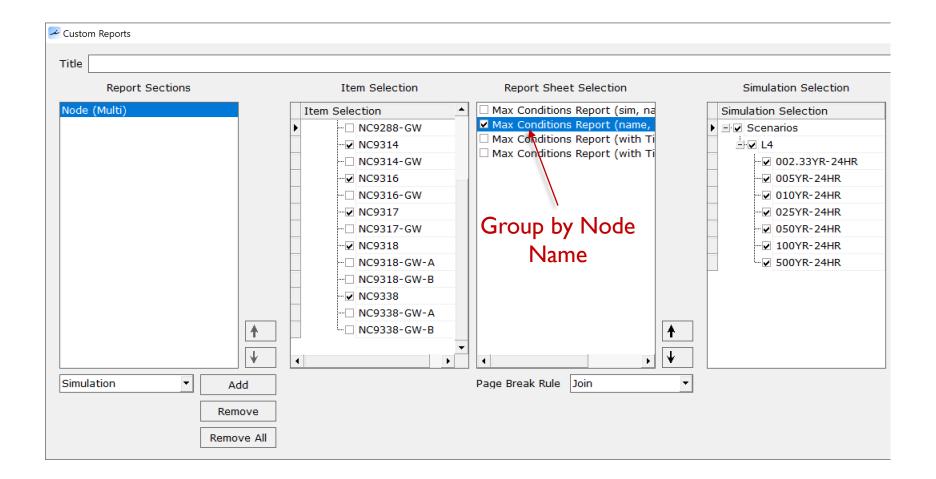

4	- Simulation Manager						
	Name	Δ					
	🗏 Scenario: L4						
	002.33YR-24HR						
	005YR-24HR						
	010YR-24HR						
	025YR-24HR						
	050YR-24HR						
Þ	100YR-24HR						
	500YR-24HR						

<u>E</u> lements	<u>S</u> imulation	Rep <u>o</u> rts	<u>W</u> indow	He <u>l</u> p
	<u>S</u> imulati			
	Simulati			
	<u>C</u> opy Re			


Simulation Execution	
Simulation Selection	Scenarios Image: Scenarios

<u>S</u> imulation	Rep <u>o</u> rts <u>W</u> indow Help		
	Mass <u>B</u> alance	•	Hydrology
	Simple Basins	•	<u>R</u> outing
	Manual Basins	•	<u> </u>
	1D <u>N</u> odes	•	
	1D <u>L</u> inks	•	
	P <u>r</u> intable	•	
	Lin <u>k</u> Path Manager		
	Process Polygons		

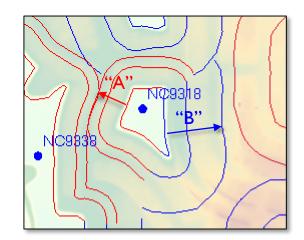
Type Superimpose sims Y Parameter Selection X Parameter Absolute Time Base Inflow Volume Base Outflow Volume Basin Inflow Volume Basin Outflow Volume 002.33YR-24HR External Inflow Volume 005YR-24HR	Report Chart		Simulation Selection
 External Outflow Volume Link Inflow Volume Link Outflow Volume Link Outflow Volume Stored Volume (Geometry Ba Stored Volume (Flow Based) Total Inflow Volume Total Outflow Volume Storer (By Inflow) 	Type Superimpos	 Base Inflow Volume Base Outflow Volume Basin Inflow Volume Basin Outflow Volume External Inflow Volume External Outflow Volume Link Inflow Volume Link Outflow Volume Stored Volume (Geometry Based) Total Inflow Volume Total Outflow Volume 	 Scenarios L4 Simulations 002.33YR-24HR 005YR-24HR 010YR-24HR 025YR-24HR 050YR-24HR 100YR-24HR


<u>S</u> imulation	Rep <u>o</u> rts	<u>W</u> indow	He <u>l</u> p		
	<u>S</u> impl <u>M</u> anu 1D <u>N</u> (1D <u>L</u> ii	nks		• • • •	
	_	able Path Mana ess Poly <u>g</u> o	-		Input <u>S</u> imple Basin Max <u>Manual Basin Max</u> <u>Node Max</u> <u>L</u> ink Max <u>G</u> roundwater Mounding
					<u>C</u> ustom

Node Max Condition	ns [L4]						
Node Name	Sim Name	Warning Stage [ft]	Max Stage [ft]	Min/Max Delta	Max Total Inflow	Max Total Outflow	Max Surface Area
				Stage [ft]	[cfs]	[cfs]	[ft2]
NB9710	002.33YR-24HR	66.20	62.11	0.0010	8.75	4.61	17792
NC9288	002.33YR-24HR	61.90	56.39	0.0010	15.82	7.96	55054
NC9314	002.33YR-24HR	60.10	55.50	0.0010	53.68	7.78	155673
NC9316	002.33YR-24HR	63.30	58.39	0.0010	52.79	2.17	298407
NC9317	002.33YR-24HR	66.20	62.02	0.0010	28.08	2.84	98775
NC9318	002.33YR-24HR	60.30	55.09	0.0010	22.35	9.96	68821
NC9338	002.33YR-24HR	60.30	54.90	0.0010	48.83	25.17	188017
NB9710	005YR-24HR	66.20	62.49	0.0010	11.62	6.70	19141
NC9288	005YR-24HR	61.90	56.51	0.0010	19.18	8.96	63754
NC9314	005YR-24HR	60.10	55.78	0.0010	66.09	9.94	158902
NC9316	005YR-24HR	63.30	58.62	0.0010	64.28	2.32	307848
NC9317	005YR-24HR	66.20	62.48	0.0010	34.92	2.61	102577
NC9318	005YR-24HR	60.30	55.36	0.0010	27.73	9.75	70462
NC9338	005YR-24HR	60.30	55.36	0.0010	59.90	25.59	199453
NB9710	010YR-24HR	66.20	63.24	0.0010	17.07	10.46	21807
NC9288	010YR-24HR	61.90	56.77	0.0010	24.72	9.44	76169
NC9314	010YR-24HR	60.10	56.22	0.0010	87.05	14.10	163751
NC9316	010YR-24HR	63.30	58.98	0.0010	83.43	2.60	316776
NC9317	010YR-24HR	66.20	63.24	0.0010	46.85	2.44	107304
NC9318	010YR-24HR	60.30	56.03	0.0010	36.99	11.30	73693
NC9338	010YR-24HR	60.30	56.03	0.0010	78.97	26.13	210416
NB9710	025YR-24HR	66.20	64.05	0.0010	23.80	14.72	24381
NC9288	025YR-24HR	61.90	57.08	0.0010	30.97	9.24	82114
NC9314	025YR-24HR	60.10	56.76	0.0010	110.99	17.87	168949
NC9316	025YR-24HR	63.30	59.38	0.0010	105.21	2.94	325821
NC9317	025YR-24HR	66.20	64.05	0.0010	60.95	2.65	112397
NC9318	025YR-24HR	60.30	56.76	0.0010	47.89	15.07	77269
NC9338	025YR-24HR	60.30	56.76	0.0010	101.45	25.31	220696
NB9710	050YR-24HR	66.20	64.65	0.0010	29.16	17.64	27984
NC9288	050YR-24HR	61.90	57.32	0.0010	35.83	8.62	84734
NC9314	050YR-24HR	60.10	57.30	0.0010	129.22	20.35	174318
NC9316	050YR-24HR	63.30	59.68	0.0010	121.95	3.21	331983

Node Name	Sim Name	Warning Stage [ft]	Max Stage [ft]	Min/Max Delta	Max Total Inflow	Max Total Outflow	Max Surface Area
				Stage [ft]	[cfs]	[cfs]	[ft2]
NC9317	050YR-24HR	66.20	64.65	0.0010	72.34	2.87	116588
NC9318	050YR-24HR	60.30	57.29	0.0010	56.66	17.32	79052
NC9338	050YR-24HR	60.30	57.29	0.0010	119.29	23.71	228635
NB9710	100YR-24HR	66.20	65.89	0.0010	41.75	22.33	43715
NC9288	100YR-24HR	61.90	57.89	0.0010	47.16	6.85	90165
NC9314	100YR-24HR	60.10	58.45	0.0010	170.46	23.14	185742
NC9316	100YR-24HR	63.30	60.35	0.0010	160.37	3.88	344091
NC9317	100YR-24HR	66.20	65.89	0.0010	98.88	3.36	125336
NC9318	100YR-24HR	60.30	58.45	0.0010	76.93	19.44	84969
NC9338	100YR-24HR	60.30	58.45	0.0010	161.43	25.18	245172
NB9710	500YR-24HR	66.20	66.91	0.0010	56.37	23.86	91619
NC9288	500YR-24HR	61.90	50.57	0.0010	60.25	5.14	95956
NC9314	500YR-24HR	60.10	59.66	0.0010	216.81	23.90	198872
NC9316	500YR 24HR	63.30	61.08	0.0010	204.15	4.64	357156
NC9317	500YR-24HR	66.20	66.91	0.0010	125.91	3.89	222995
NC9318	500YR-24HK	60.30	59.65	0.0010	98.04	20.36	91928
NC9338	500YR-24HR	60.30	59.65	0.0010	210.06	22.11	270417

icp14



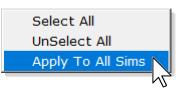
Node Max Condition	is [L4]	_	-	_			
Node Name	Sim Name	Warning Stage [ft]	Max Stage [ft]	Min/Max Delta	Max Total Inflow	Max Total Outflow	Max Surface Area
				Stage [ft]	[cfs]	[cfs]	[ft2]
NB9710	002.33YR-24HR	66.20	62.11	0.0010	8.75	4.61	17792
NB9710	005YR-24HR	66.20	62.49	0.0010	11.62	6.70	19141
NB9710	010YR-24HR	66.20	63.24	0.0010	17.07	10.46	21807
NB9710	025YR-24HR	66.20	64.05	0.0010	23.80	14.72	24381
NB9710	050YR-24HR	66.20	64.65	0.0010	29.16	17.64	27984
NB9710	100VR-24HR	66.20	65.89	0.0010	41.75	22.33	43715
NB9710	500YR-24HR	66.20	66.91	0.0010	56.37	23.86	91619
NC9288	002.33YR-24HR	61.90	56.39	0.0010	15.82	7.96	55054
NC9288	005YR-24HR	61.90	56.51	0.0010	19.18	8.96	63754
NC9288	010YR-24HR	61.90	56.77	0.0010	24.72	9.44	76169
NC9288	025YR-24HR	61.90	57.08	0.0010	30.97	9.24	82114
NC9288	050YR-24HR	61.90	57.32	0.0010	35.83	8.62	84734
NC9288	100YR-24HR	61.90	57.89	0.0010	47.16	6.85	90165
NC9288	500YR-24HR	61.90	58.57	0.0010	60.25	5.14	95956
NC9314	002.33YR-24HR	60.10	55.50	0.0010	53.68	7.78	155673
NC9314	005YR-24HR	60.10	55.78	0.0010	66.09	9.94	158902
NC9314	010YR-24HR	60.10	56.22	0.0010	87.05	14.10	163751
NC9314	025YR-24HR	60.10	56.76	0.0010	110.99	17.87	168949
NC9314	050YR-24HR	60.10	57.30	0.0010	129.22	20.35	174318
NC9314	100YR-24HR	60.10	58.45	0.0010	170.46	23.14	185742
NC9314	500YR-24HR	60.10	59.66	0.0010	216.81	23.90	198872
NC9316	002.33YR-24HR	63.30	58.39	0.0010	52.79	2.17	298407
NC9316	005YR-24HR	63.30	58.62	0.0010	64.28	2.32	307848
NC9316	010YR-24HR	63.30	58.98	0.0010	83.43	2.60	316776
NC9316	025YR-24HR	63.30	59.38	0.0010	105.21	2.94	325821
NC9316	050YR-24HR	63.30	59.68	0.0010	121.95	3.21	331983
NC9316	100YR-24HR	63.30	60.35	0.0010	160.37	3.88	344091
NC9316	500YR-24HR	63.30	61.08	0.0010	204.15	4.64	357156
NC9317	002.33YR-24HR	66.20	62.02	0.0010	28.08	2.84	98775
NC9317	005YR-24HR	66.20	62.48	0.0010	34.92	2.61	102577
NC9317	010YR-24HR	66.20	63.24	0.0010	46.85	2.44	107304
NC9317	025YR-24HR	66.20	64.05	0.0010	60.95	2.65	112397


icp14

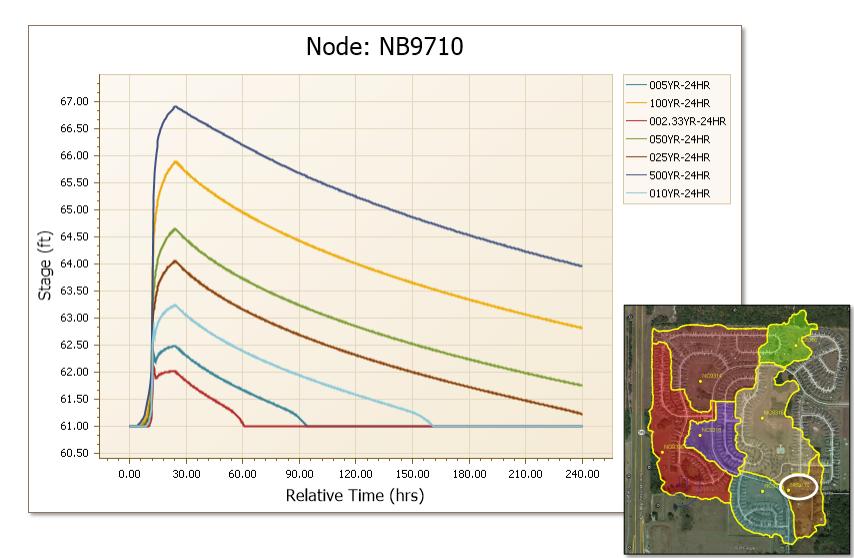
Node Name	Sim Name	Warning Stage [ft]	Max Stage [ft]	Min/Max Delta	Max Total Inflow	Max Total Outflow	Max Surface Area
				Stage [ft]	[cfs]	[cfs]	[ft2]
NC9317	050YR-24HR	66.20	64.65	0.0010	72.34	2.87	116588
NC9317	100YR-24HR	66.20	65.89	0.0010	98.88	3.36	125336
NC9317	500YR-24HR	66.20	66.91	0.0010	125.91	3.89	222995
NC9318	002.331R-24HR	60.30	55.09	0.0010	22.35	9.96	68821
NC9318	005YR-24HR	60.30	55.36	0.0010	27.73	9.75	70462
NC9318	010YR-24HR	60.30	56.03	0.0010	36.99	11.30	73693
NC9318	025YR-24HR	60.30	56.76	0.0010	47.89	15.07	77269
NC9318	050YR-24HR	60.30	57.29	0.0010	56.66	17.32	79052
NC9318	100YR-24HR	60.30	58.45	0.0010	76.93	19.44	84969
NC9318	500YR-24HR	60.30	59.65	0.0010	98.04	20.36	91928
NC9338	002.33YR-24HR	60.30	54.90	0.0010	48.83	25.17	188017
NC9338	005YR-24HR	60.30	55.36	0.0010	59.90	25.59	199453
NC9338	010YR-24HR	60.30	56.03	0.0010	78.97	26.13	210416
NC9338	025YR-24HR	60.30	56.76	0.0010	101.45	25.31	220696
NC9338	050YR-24HR	60.30	57.29	0.0010	119.29	23.71	228635
NC9338	100YR-24HR	60.30	58.45	0.0010	161.43	25.18	245172
NC9338	500YR-24HR	60.30	59.65	0.0010	210.06	22.11	270417

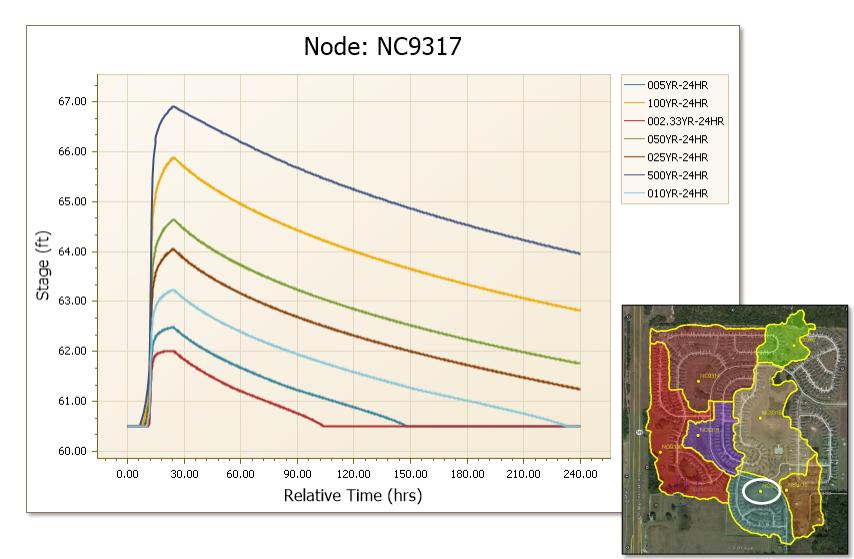
<u>S</u> imulation	Rep <u>o</u> rts	<u>W</u> indow	He <u>l</u> p		
	Mass <u>B</u> alance <u>S</u> imple Basins <u>M</u> anual Basins 1D <u>N</u> odes 1D <u>L</u> inks			* * * * *	
Printable Link Path Manager Process Polygons		Input <u>S</u> imple Basin Max <u>M</u> anual Basin Max <u>N</u> ode Max <u>L</u> ink Max <u>Groundwater Mounding</u> <u>C</u> ustom			

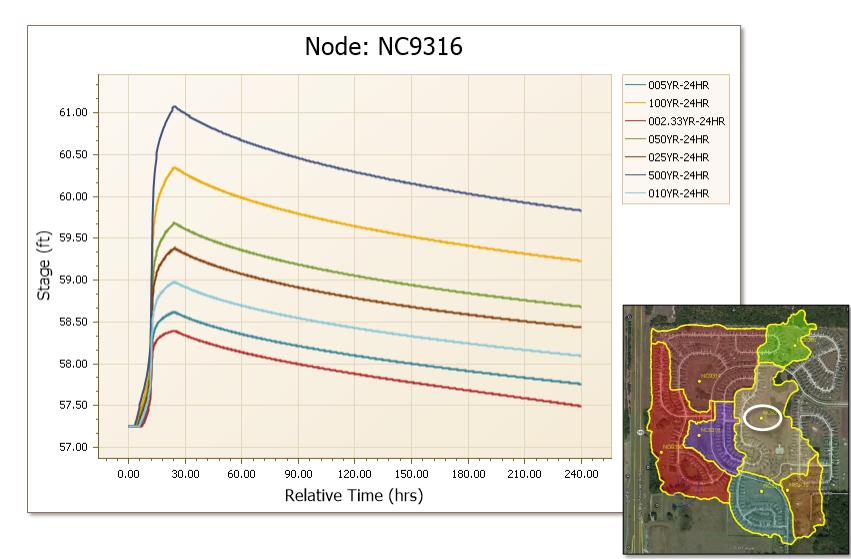
Report Sections	Item Selection	Report Sheet Selection	Simulation Selection		
Percolation Link	Item Selection ▶ Scenarios ↓ L4 □ PERC-B9710 □ PERC-C9288 □ PERC-C9314 □ PERC-C9317 □ PERC-C9318-A □ PERC-C9318-B □ PERC-C9338-B □ PERC-C9316	 Input Report Min/Max Conditions Report Min/Max Conditions Report (with Flow Chart Average Velocity Chart Downstream Velocity Chart Upstream Velocity Chart Flow % Exceedance Chart Flow Raster Chart GW Mounding Chart 	Simulation Selection ▶		

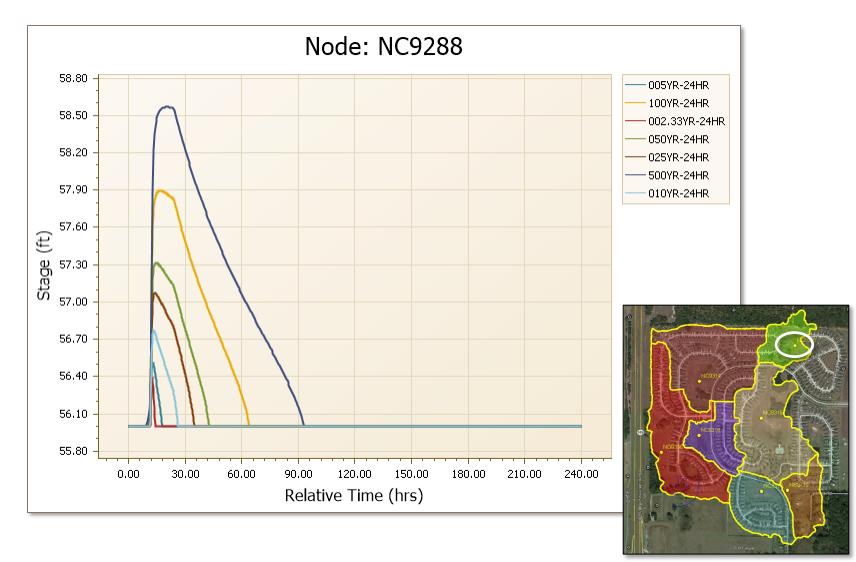


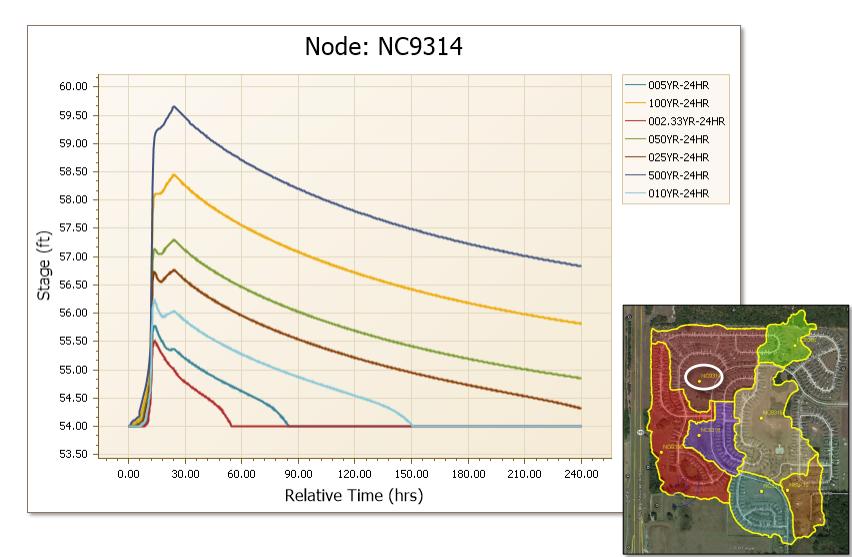
Lesson 3 - Hydraulics, Part 2

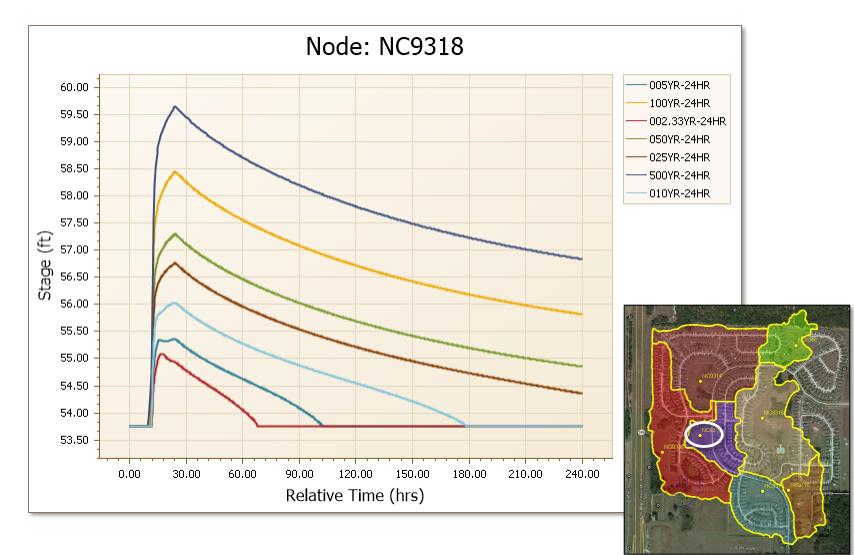

Perc Link: PERC-C9318-B (Sim: 025YR-24HR) [PERC-C9318-B] 57.00 **US Node Elev** PERC-C9318-B - Wetting Front - GWT at X = 0.00 56.00 GWT at X = 2.50 GWT at X = 3.80 GWT at X = 5.10 55.00 GWT at X = 6.40 - GWT at X = 9.00 GWT at X = 12.25 54.00 GWT at X = 15.50 GWT at X = 22.00 — GWT at X = 28.50 53.00 Stage (ft) – GWT at X = 41.50 GWT at X = 54.50 GWT at X = 67.50 52.00 GWT at X = 80.50 GWT at X = 106.50 NC93/18 - GWT at X = 132.50 51.00 — GWT at X = 165.00 C983 GWT at X = 197.50 "P" — GWT at X = 230.00 50.00 - GWT at X = 262.50 - GWT at X = 295.00 GWT at X = 327.50 49.00 48.00 100.00 0.00 200.00 Time [hrs]

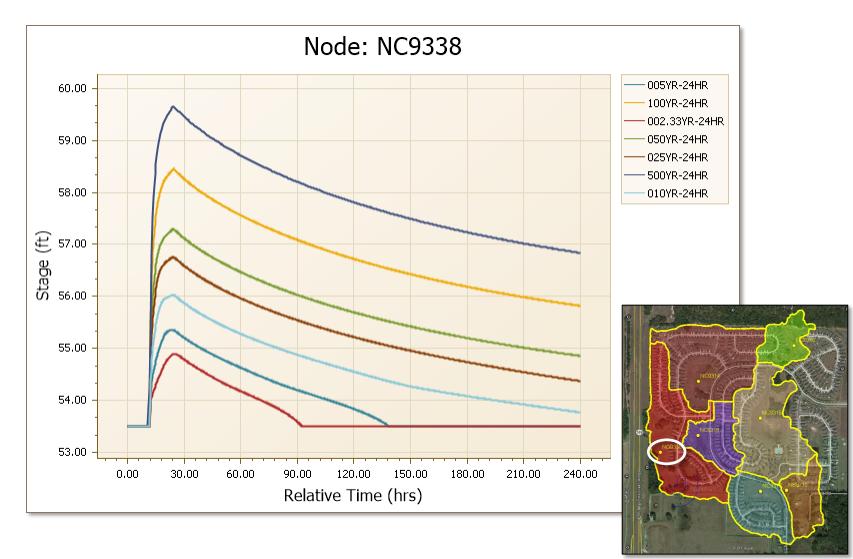

Lesson 3 - Hydraulics, Part 2

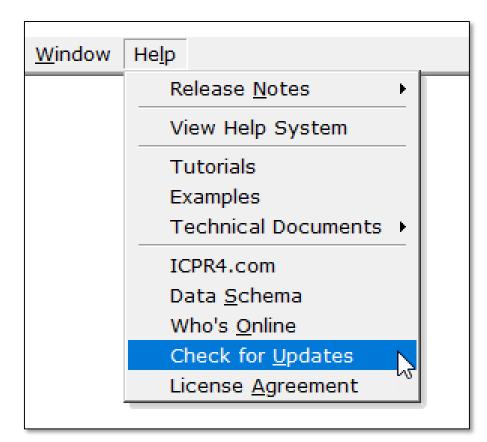

<u>S</u> imulation	Rep <u>o</u> rts	<u>W</u> indow	He <u>l</u> p		
	<u>S</u> imple			+ + + +	<u>T</u> ime Series
	P <u>r</u> inta			-	 <u>M</u> ax
	_	ath Mana ss Polygo	-		Aggregate
					-




Report Chart				Simulation Selection	Item Selection
Type X Parameter	Superimpose sims Relative Time	 Y Parameter Selection Time Step Triggers/Levels Stage Warning Stage Surface Area Base Inflow Rate Base Outflow Rate Basin Outflow Rate Basin Outflow Rate External Inflow Rate External Outflow Rate Link Inflow Rate Link Outflow Rate Total Inflow Rate Total Outflow Rate 		 Scenarios L4 Simulations 002.33YR-24HR 005YR-24HR 010YR-24HR 025YR-24HR 050YR-24HR 100YR-24HR 500YR-24HR 500YR-24HR 	 ✓ NB9710 □ NB9710-GW ✓ NC9288 □ NC9288-GW ✓ NC9314 □ NC9314-GW ✓ NC9316 □ NC9316-GW ✓ NC9317 □ NC9317-GW ✓ NC9318 □ NC9318-GW-A □ NC9318-GW-B ✓ NC9338 □ NC9338-GW-A □ NC9338-GW-B







Next Webinar – Lesson 5: Typical Pre/Post Examples Tuesday November 5, 2019 11:30 – 1:30 (EDT)

We will try to post a recording of this webinar and/or the presentation material as soon as we can. To find them: "Check for Updates" sometime tomorrow.

support@icpr4.com