ic

Regulatory Review Webinar Series

Lesson 3 Hydraulics, Part 2

> Peter J. Singhofen Streamline Technologies, Inc.

Tuesday – October 29, 2019

Next Webinar – Lesson 4: Hydraulics, Part 3

Thursday October 31, 2019 11:30 – 1:30 (EDT)

We will try to post a recording of this webinar and/or the presentation material as soon as we can. To find them: "Check for Updates" sometime tomorrow.

support@icpr4.com

Lesson 3 Topics

- Weir Links
- Drop Structure Links
- Rating Curve Links

Weir Links Data Form

Name			Default Value	Operating Table	Reference Node
Scenario	Scenario1 🔹	Bottom Clip	0		
From Node		Тор Сір	0		
To Node	General	Weir Discharge Coefficient	2.8		
Link Count	1	Orifice Discharge Coefficient	0.6		Clips
Flow Direction	Both 🔻				enpo
Dampening Threshold	0			Disch	2100
Weir Type	Sharp Crested, Vertical	Max Depth	0	Coeffic	cients
Geometry	Rectangular	Max Width	0		
Invert	0	Fillet	0		
Control Elevation	0	Geometry			

Weir Links Five (5) Weir Types

Types

Horizontal (source: FDOT)

Vertical (source: FAO)

6

Lesson 3 - Hydraulics, Part 2

Weir Links Types

The only difference between sharp (narrow) crested and broad crested weirs is how submergence is treated

Weir Links Basic Weir Equations

 $Q_{free} = C_w L h^{3/2}$ (rectangular weirs)

$$Q_{free} = C_w A \sqrt{h}$$
 (generalized form)

where,

- Q_{free} free discharge flow rate (f³s⁻¹, m³s⁻¹)
- C_w weir discharge coefficient (f^{0.5}s⁻¹, m^{0.5}s⁻¹)
- A cross sectional area (f², m²)
- L weir length (f, m)
- *h* head as measured above the invert elevation (f, m)

Weir Links Submergence

If the water elevation on the downstream side of a weir submerges the invert elevation, then a flow reduction factor must be applied to the free discharge flow rate.

$$Q_{submerged} = Q_{free} R_f$$

Computation of the flow reduction factor depends on the weir type.

Submergence – Sharp and Narrow Crested Weirs

$$Q_{submerged} = Q_{free} R_f$$
$$R_f = 1.0 - \left[0.45S + \frac{0.55}{2^{(10-10S)}} \right]$$

 A_1

Flow is reduced immediately as the downstream water elevation begins to submerge the invert of the sharp/narrow crested weir.

The modified Mavis formula is used to determine the flow reduction factor. $S = (A_2 H_2^{1/2}) / (A_1 H_1^{1/2})$ subme

submergence ratio

- H_1 depth above invert on upstream side (f, m)
- H₂ depth above invert on downstream side (f, m)
 - cross sectional area at H_1 (f², m²)
- A_2 cross sectional area at H_2 (f², m²)

Submergence – Broad Crested Weirs

$$Q_{submerged} = Q_{free}R_f$$

$$R_f = 1.0 - 27.8 \left(\frac{H_2}{H_1} - 0.67\right)^3$$

The Fread equation (Fread, 1980) is used for broad crested weirs and begins reducing the discharge rate when the depth of the downstream water level above the weir invert reaches 67% of the upstream depth.

for
$$\left(\frac{H_2}{H_1}\right)$$
 > 0.67 (decimal)

- H_1 depth above invert on upstream side (f, m)
- H_2 depth above invert on downstream side (f, m)

Submergence – Paved & Gravel Roads

$$Q_{submerged} = Q_{free} R_f$$

The reduction factors for paved and gravel roads are similar to the Fread equation except the chart to the right is used for the factors. Flow reductions for paved and gravel roads begin at submergences of 80% and 74%, respectively.

12

Lesson 3 - Hydraulics, Part 2

Weir Links Effects of Submergence

13

Lesson 3 - Hydraulics, Part 2

Weir Links Orifice Flow

$$Q_{orifice} = C_{orifice} A \sqrt{2gh}$$

where,

- $Q_{orifice}$ orifice discharge flow rate (f3s-1, m3s-1) $C_{orifice}$ orifice discharge coefficient (decimal)Across sectional area of flow (f2, m2)ggravitational constant (32.16 fs-2, 9.80 ms-2)
- *h* head across orifice as measured from the center of gravity (f, m)

Transition from Weir Flow to Orifice Flow - Vertical Weirs -

- Weir flow is used exclusively between the invert of the opening and the top of the opening.At "max depth"
- Complete orifice flow occurs for depths at and above 1.2 x max depth.
- A linear relationship is used for the transition between the max depth and 1.2 times the max depth.

```
VERTICAL RECTANGULAR
MAX WIDTH = 1.0'
MAX DEPTH = 1.0'
```


Transition from Weir Flow to Orifice Flow - Horizontal Weirs -

- Flow is first calculated as if the weir is vertical and rectangular, using the perimeter of the weir as its length.
- Then a second calculation is made assuming orifice flow based on the cross sectional area of the opening.
- ICPR then compares the two and takes the lesser value as the controlling flow for the opening.

Weir Links Geometry

- There are eighteen geometry types available for weirs
- Specific data fields depend on the geometry type selected

Geometry	Rectangular 🔹
Invert	Circular Horizontal Ellipse
Control Elevation	Vertical Ellipse Arch
	Rectangular
	V-Notch Up V-Notch Down
Comment	Egg Shaped Horseshoe
	Gothic Catenary
	Basket Handle
	Semi-Elliptical
	Parabolic
	Irregular //

Weir Type	Sharp Crested, Vertical	Max Depth	0
Geometry	Rectangular 🔹	Max Width	0
Invert	0	► Fillet	0
Control Elevation	0		
Weir Type	Sharp Crested, Vertical	Max Depth	0
Weir Type Geometry	Sharp Crested, Vertical V-Notch Up	Max Depth Max Width	0 0
Weir Type Geometry Invert	Sharp Crested, Vertical V-Notch Up 0	Max Depth Max Width	0
Weir Type Geometry Invert Control Elevation	Sharp Crested, Vertical V-Notch Up 0 0	Max Depth Max Width	0

Geometry

In all cases except for irregular sections, the max depth parameter is used to define the beginning of the transition between weir flow and orifice flow.

Max Depth

Weir Links Geometry

If the cross section has a "lid", then orifice flow is possible. Otherwise, only weir flow is possible. Also, if an irregular section geometry type is specified, the cross section is automatically shifted vertically into the invert elevation. The cross section serves as a template.

Weir Links Discharge Coefficients

 $Q_{free} = C_w L h^{3/2}$

 $Q_{orifice} = C_{orifice} A \sqrt{2gh}$

	Defa	ault Value	Operating Table	Reference Node
Bottom Clip	0			
Тор Сір	0			
Weir Discharge Coefficient	2.8			
Orifice Discharge Coefficient	0.6			

Orifice Discharge Coefficient

- Orifice discharge coefficients can be obtained from standard hydraulic handbooks such as (Brater and King, 1976).
- Typically, the orifice discharge coefficient will range between 0.5 and 0.7 but varies depending on specific conditions.
- Note that the orifice coefficient is dimensionless and therefore no special consideration is required when working in either English or metric units.

Weir Links Weir Discharge Coefficient

- ICPR converts all weir geometries into a series of equivalent rectangles.
- Regardless of the geometric shape, the weir discharge coefficient should always be set as if it were a rectangular geometry type.
- Typically, the weir discharge coefficient will range between 2.6 and 3.4 f^{0.5}s⁻¹ (1.44 and 1.88 m^{0.5}s⁻¹), but varies depending on specific conditions.
- Weir coefficients can be obtained from standard hydraulic handbooks such as (Brater and King, 1976).

Variable Weir Discharge Coefficient

<u>Hydrology</u>	1D Hydraulics	Reference <u>E</u> lem	ents	<u>S</u> imulation	Rep <u>o</u> rts	<u>W</u> indow	He <u>l</u> p
	<u>N</u> odes						
	All <u>L</u> ink Typ	es					
	<u>C</u> hannel Lir	ks					
	<u>P</u> ipe Links						
	<u>W</u> eir Links.						
	<u>D</u> rop Struc	ture Links					
	Rating Curv	/e Links					
	Bre <u>a</u> ch Links						
	Erench Drain Links						
	Percola <u>t</u> ion Links						
	Channel Cross Sections						
	W <u>e</u> ir Cross	Sections					
	Operating	<u>r</u> ables		Botto <u>m</u> Clip	s		
				<u>T</u> op Clips			
				Variable <u>W</u> e	eir Coeffic	ients	
				<u>V</u> ariable Ori	ifice Coeff	ficients	Ů.
				Rating <u>C</u> urv	/es		

Variable Weir Discharge Coefficient

Name	OGEE-1	Va	riable Weir Coefficient Poir	nt Edit 🛛 🕂 🗙
Scenario	OGEE SPILLWAY	H	• 🗴 🛪 🗛 🕅	
Comment			Upstream Depth	Discharge Coefficient
comment		Þ	0	3.08
			0.6	3.39
			1.2	3.56
			1.8	3.68
			2.4	3.76
			3	3.8
			3.6	3.83
			4.2	3.85
			4.8	3.87
			5.4	3.88
			6	3.89
			9	3.92
			12	3.94
			18	3.95

Variable Weir Discharge Coefficient

<u>H</u> ydrology	1D Hydraulics	Reference <u>E</u> lements			
	<u>N</u> odes				
	All <u>L</u> ink Typ	es			
	<u>C</u> hannel Links				
	<u>P</u> ipe Links				
	Weir Links.	📐			
	Drop Structure Links				

Name	OGEE - VARIABLE		Default Value	Operating Table
Scenario	OGEE SPILLWAY	Bottom Clip	0	
From Node	UP	Top Clip	0	
To Node	DN	Weir Discharge Coefficient	3.2	OGEE-1
Link Count	1	Orifice Discharge Coefficient	0.6	
Flow Direction	Both 💌			
Damping Threshold	0			right click
Weir Type	Broad Crested, Vertical 🔹	Max Depth	99	
Geometry	Rectangular 🔹	Max Width	20	
Invert	100	Fillet	0	
Control Elevation	100			

Weir Links Variable Weir Discharge Coefficient

The clip feature can be used to block off a portion of the weir opening. Bottom clips are measured upward from the invert elevation. Top clips are measured downward from the invert elevation plus the max depth.

An operating table can be used to "schedule" opening and closing of these gates based on operational criteria.

		Default Value	Operating Table	Reference Node
Bo	ottom Clip	0		
	Top Clip	0		
Weir Discharge Co	oefficient	2.8		
Orifice Discharge Coefficient		0.6		

Gate Structures S-96B and S-96C, USJRB

Source: Star Controls

30

Lesson 3 - Hydraulics, Part 2

Name	S-96B			Default Value	Operating Table
Scenario	SURFACE MODEL		Bottom Clip	0	
From Node	S96B-US		Top Clip	0	S-96B-GATE
To Node	S96B-DS	Weir Discha	rge Coefficient	3.88	
Link Count	1	Orifice Discha	rge Coefficient	0.75	
Flow Direction	Positive •				
Damping Threshold	0				
Weir Type	Broad Crested, Vertical		Max Depth	10.9]
Geometry	Rectangular 🔻		Max Width	20]
Invert	11.63		Fillet	0]
Control Elevation	11.63				
			Оре	erating Table	Reference Node
					right click
Comment	FROM SJRWMD SPREADSHEET - U	SJRB PROJECT S			
			-90B-GATE	Select Existina Ite	m
				Goto Existing Item	
					<u> </u>

Name	S-96B-GATE	Top Clip Point Edit		
Scenario	SURFACE MODEL		• 🕺 🗶 🗛 🤮	
			Stage	Depth of Clip
Туре	Stage •	►	0	10.9
Comment	USED TO CONTROL SJWMA		20.53	10.9
connent			21.53	0
			999	0

- This is a top clip operating table based on the upstream stage of the corresponding weir link (S-96B).
- The top clip is set to 10.9 feet (measured downward from the maximum depth of the weir) when the water surface at node "S96B-US) is at or below elevation 20.53 ft (NAVD88).
- The clip depth decreases linearly to zero between elevations 20.53 ft and 21.53 ft (NAVD88). When the top clip depth is zero, the structure is fully opened.

Name	S-96B-GATE	Top Cli
Scenario	SURFACE MODEL -	+ X
Туре	Stage	Stag ▶
Comment	Time Upstream Depth Above Invert Downstream Depth Above Invert Head Across Invert	
	Stage	
	× //	

- The operating table type can be changed depending on how you would like to operate the structure.
- The top clip can be based on time, upstream and downstream depths above the invert elevation or head across the structure (measured as upstream elevation minus downstream elevation).

Weir Links Curb Inlets

Weir Links Curb Inlets

a. Grate

Horizontal Weir

- use rectangular geometry
- set max depth and max width to single slot dimension
- set count to number of slots
- set invert & control to average elevation of grate

b. Curb-opening Inlet

Vertical Weir

- use rectangular geometry
- set max depth to vertical opening dimension
- set max width to horizontal dimension

c. Combination Inlet Use 2 Weir Links
Weir Links Curb Inlets

Weir Links Curb Inlets

Weir Links Curb Inlets

Weir Type	Sharp Crested, Vertical	·	Max Depth	0.5	
Geometry	Rectangular	·	Max Width	12	
Invert	119.72		Fillet	0	
Control Elevation	119.72				

Lesson 3 - Hydraulics, Part 2

icp14

Drop Structure Links Basics

A drop structure of a weir component and a pipe component.

- Weir component in series with pipe component
- Upstream node (the "from node") is always located at the upstream end of the weir component
- Downstream node (the "to node") is always placed at the downstream end of the pipe component
- Pipe hydraulics must balance with weir hydraulics

Drop Structure Links Data Form

<u>H</u> ydrology	1D Hydraulics Reference Element		
	<u>N</u> odes		
	All <u>L</u> ink Typ	bes	
	<u>C</u> hannel Lir	nks	
	<u>P</u> ipe Links		
	<u>W</u> eir Links		
	Drop Structure Links		
	Rating Curve Links		
	Droach Link	(D	

There are 5 tabs on the drop structure link data form, three (highlighted below) will be discussed.

eral						Create		Delete]
	Ī	Main	Grid	Pipe Component Main	Weir Com	ponent Main	Weir Com	ponent Grid	
	Enter 'Comment'								
'									

Drop Structure Links Data Form – Main Tab

Name	DROP
Scenario	DROP STRUC
From Node	UP
To Node	DN
Link Count	1
Flow Direction	Both
Solution	Combine
Increments	10

Main tab includes:

- Connectivity
- Link Count (# of identical drop structures)
- Flow Direction
- Solution (combine & split methods)

Drop Structure Links Data Form – Pipe Component Tab

Pipe Count	1
Damping Threshold	0
Length	100
FHWA Culvert Code	0
Entrance Loss Coefficient	0.5
Exit Loss Coefficient	1
Bend Loss Coefficient	0
Bend Location	0
Energy Switch	Energy

	Upstream	Downstream
Invert	-2	-2
Manning's N	0.024	0.024
	Geon	netry
Туре	Circular 🔹	Circular 🗸
Max Depth	1.5	1.5

Drop Structure Links Data Form – Weir Component Tab

Name	1
Weir Count	1
Weir Flow Direction	Both 💌
Damping Threshold	0
Weir Type	Sharp Crested, Vertical
Geometry	Rectangular 🗸
Invert	0
Control Elevation	0

	Default Value	Operating Table	Reference Node
Bottom Clip	0		
Top Clip	0		
Weir Discharge Coefficient	3.2		
Orifice Discharge Coefficient	0.6		

Drop Structure Links

Solution Method: "Combine" with 10 "Increments"

ScenarioDROP STRUCFrom NodeUPTo NodeDNLink Count1Flow DirectionBoth
From NodeUPTo NodeDNLink Count1Flow DirectionBoth
To Node DN Link Count 1 Flow Direction Both
Link Count 1 Flow Direction Both
Flow Direction Both
Solution Combine
Increments 10

ICPR3 solution method used with "Combine" method and non-zero "Increments". Pipe storage not included in calcs. Pipe velocities not valid.

Drop Structure Links

Solution Method: "Combine" with 10 "Increments"

Drop Structure Links Solution Method: "Combine" with 10 "Increments"

ELEV BETWEEN WEIR & PIPE COMPONENTS (ft)

47

Lesson 3 - Hydraulics, Part 2

Drop Structure Links

Solution Method: "Combine" with 0 "Increments"

Name	DROP	
Scenario	DROP STRUC	
From Node	UP	
To Node	DN	
Link Count	1	
Flow Direction	Both	
Solution	Combine	
Increments	0	"D·
		"Binary with "C zero "Inc

"Binary Search" method used with "Combine" solution and zero "Increments". Pipe storage not included in calcs. Pipe velocities not valid.

Drop Structure Links Solution Method: "Combine" with 0 "Increments"

Drop Structure Links

Solution Method: "Combine" with 0 "Increments"

Name	DROP	
Scenario	DROP STRUC	
From Node	UP	
To Node	DN	
Link Count	1	
Flow Direction	Both	
Solution	Split	
		"Split" meth
		structure int
		storage inclu

"Split" method decomposes drop structure into separate links. Pipe storage included in calcs. Includes accurate velocities.

Drop Structure Links Solution Method: "Split"

Drop Structure Links Example DS#I

There are three (3) weir components in the example shown below including a circular bleeder orifice, a vertical rectangular slot and an overflow inlet.

Drop Structure Links Example DS#I

Invert and Control Elevations for a Bleeder Device

Drop Structure Links Example DS#I: Main Tab

🛩 Link Drop Structure Data						
Men <u>u</u> - 🔚 📰 🔚 📰 📰 📄 Az Az 🗞 🌂 🕜						
Link List 🛛 📮 🗙	Name	P1-BDZ				
Name	Scenario	Scenario1	•			
► P1-BDZ	From Node	P1				
	To Node	BDZ	Binary Search			
	Link Count	1				
	Flow Direction	Both /	•			
	Solution	Combine	•			
Pipe Component lab	Increments	0				
	Comment		<u> </u>			
		Weir Co	omponent Tab			
		[
	Create Create Delete					
Main Grid Pipe Component Main Weir Con	nponent Main Weir Com	ponent Grid				
1 Drop Structure Link(s)						

Drop Structure Links Example DS#I: Pipe Component Tab

Pipe Count	1	
Damping Threshold	0	number of identical
Length	910	
FHWA Culvert Code	1	pipe bailers
Entrance Loss Coefficient	0.5	
Exit Loss Coefficient	1	
Bend Loss Coefficient	0	
Bend Location	0	
Energy Switch	Energy 💌	

	Upstream	Downstream
Invert	72	67.4
Manning's N	0.013	0.013
	Geon	netry
Туре	Circular 🔹	Circular 💌
Max Depth	2	2

Drop Structure Links Example DS#I:Weir Component Tab (#I)

	Default Value	Operating Table
Bottom Clip	0	
Top Clip	0	
Weir Discharge Coefficient	3.2	
Orifice Discharge Coefficient	0.6	

Drop Structure Links Example DS#1:Weir Component Tab (#2) Name 2 Weir Count 1 vertical slot Weir Flow Direction Both Damping Threshold 0 Sharp Crested, Vertical 🍧 Weir Type -Max Depth 2 Rectangular Geometry Max Width 1 78.5 Invert Fillet 0 Control Elevation 78.5

	Default Value	Operating Table
Bottom Clip	0	
Top Clip	0	
Weir Discharge Coefficient	3.2	
Orifice Discharge Coefficient	0.6	

Drop Structure Links Example DS#I:Weir Component Tab (#3) Name 3 Weir Count 1 grate opening Weir Flow Direction Both Damping Threshold 0 Weir Type Horizontal Max Depth 3 Rectangular Geometry Max Width 2 80.75 Invert Fillet 0 Control Elevation 80.75

	Default Value	Operating Table
Bottom Clip	0	
Top Clip	0	
Weir Discharge Coefficient	3.2	
Orifice Discharge Coefficient	0.6	

Drop Structure Links Example DS#I: Input Report

Drop Structure Links Example DS#1: Input Report

Pipe Component

Drop Structure Link:	P1-BDZ	Upstrea	am Pipe		Downstre	eam Pipe
Scenario:	Scenario1	Invert:	72.00 ft		Invert:	67.40 ft
From Node:	P1	Manning's N:	0.0130	1	Manning's N:	0.0130
To Node:	BDZ	Geometry	r: Circular		Geometry	r: Circular
Link Count:	1	Max Depth:	2.00 ft		Max Depth:	2.00 ft
Flow Direction:	Both			Bottom Clip		
Solution:	Combine	Default:	0.00 ft		Default:	0.00 ft
Increments:	0	Op Table:			Op Table:	
Pipe Count:	1	Ref Node:			Ref Node:	
Damping:	0.0000 ft	Manning's N:	0.0000	1	Manning's N:	0.0000
Length:	910.00 ft			Top Clip		
FHWA Code:	1	Default:	0.00 ft		Default:	0.00 ft
Entr Loss Coef:	0.50	Op Table:			Op Table:	
Exit Loss Coef:	1.00	Ref Node:			Ref Node:	
Bend Loss Coef:	0.00	Manning's N:	0.0000	1	Manning's N:	0.0000
Bend Location:	0.00 ft					
Energy Switch:	Energy					
Pipe Comment:						

60

Example DS#1: Input Report

	Weir Cor	mponent		
	Weir:	1	Botto	m Clip
	Weir Count:	1	Default:	0.00 ft
	Weir Flow Direction:	Both	Op Table:	
	Damping:	0.0000 ft	Ref Node:	
Wair Component #1	Weir Type:	Horizontal	Тор	Clip
	Geometry Type:	Circular	Default:	0.00 ft
(bleeder)	Invert:	75.00 ft	Op Table:	
	Control Elevation:	76.00 ft	Ref Node:	
	Max Depth:	0.50 ft	Discharge	Coefficients
			Weir Default:	3.200
			Weir Table:	
			Orifice Default:	0.600
			Orifice Table:	
Weir Co	omment:			
	Weir Cor	nponent		ot:
	Weir:	2	Botto	m Clip
	Weir Count:	1	Default:	0.00 ft
	Weir Flow Direction:	Both	Op Table:	
	Damping:	0.0000 π	Ref Node:	at
Weir Component #2	Weir Type:	Sharp Crested Vertical	Top	Clip
	Geometry Type:	Rectangular	Default:	0.00 ft
(vertical slot)	Invert:	/8.50 ft	Op Table:	
	Control Elevation:	/8.50 π	Ref Node:	
	Max Depth:	2.00 ft	Discharge	Coefficients
	Max Width:	1.00 ft	Weir Default:	3.200
	Fillet:	0.00 ft	Weir Table:	
			Onfice Default:	0.600
			Orifice Table:	
Weir Co	omment:			

Drop Structure Links Example DS#1: Input Report

Weir:3Bottom ClipWeir Count:1Default:0.00 ftWeir Flow Direction:BothOp Table:Damping:0.0000 ftRef Node:Damping:0.0000 ftRef Node:Weir Type:HorizontalDefault:0.00 ftGeometry Type:RectangularDefault:0.00 ftInvert:80.75 ftOp Table:Control Elevation:80.75 ftOp Table:Max Depth:3.00 ftDischarge CoefficientsMax Width:2.00 ftWeir Table:Fillet:0.00 ftWeir Table:Orifice Default:0.600Orifice Table:Orifice Table:		Weir Co	mponent	
Weir Count:1Default:0.00 ftWeir Flow Direction:BothOp Table:Damping:0.0000 ftRef Node:Damping:Weir Type:Horizontal(horizontal grate)Invert:80.75 ftControl Elevation:80.75 ftOp Table:Max Depth:3.00 ftDischarge CoefficientsMax Width:2.00 ftWeir Table:Fillet:0.00 ftOrifice Default:0.00 ftOrifice Table:		Weir:	3	Bottom Clip
Weir Flow Direction:BothOp Table: Ref Node:Veir Component #3 (horizontal grate)Weir Type:HorizontalTop ClipGeometry Type:RectangularDefault:0.00 ftInvert:80.75 ftOp Table: Control Elevation:80.75 ftMax Depth:3.00 ftDischarge CoefficientsMax Width:2.00 ftWeir Table: Orifice Default:0.00 ftFillet:0.00 ft0.00 ft0.00 ft		Weir Count:	1	Default: 0.00 ft
Damping: 0.0000 ft Ref Node: Weir Type: Horizontal Top Clip Geometry Type: Rectangular Default: 0.000 ft (horizontal grate) Invert: 80.75 ft Op Table: Control Elevation: 80.75 ft Discharge Coefficients Max Depth: 3.00 ft Weir Default: 3.200 Fillet: 0.00 ft Weir Table: Orifice Default: 0.600 Orifice Table: Orifice Table: Orifice Table: Orifice Table:		Weir Flow Direction:	Both	Op Table:
Weir Type: Horizontal Top Clip Geometry Type: Rectangular Default: 0.00 ft Invert: 80.75 ft Op Table: Control Elevation: 80.75 ft Discharge Coefficients Max Depth: 3.00 ft Discharge Coefficients Max Width: 2.00 ft Weir Table: Fillet: 0.00 ft Weir Table: Orifice Default: 0.600 Orifice Table: 0.600		Damping:	0.0000 ft	Ref Node:
Weir Component #5 (horizontal grate) Geometry Type: Rectangular Default: 0.00 ft Invert: 80.75 ft Op Table: Control Elevation: 80.75 ft Ref Node: Max Depth: 3.00 ft Discharge Coefficients Max Width: 2.00 ft Weir Default: 3.200 Fillet: 0.00 ft Weir Table: Orifice Default: 0.600 Orifice Table: 0.600 Orifice Table: Orifice Table:	Nain Canazanant +	Weir Type:	Horizontal	Top Clip
(horizontal grate) Invert: 80.75 ft Op Table: Control Elevation: 80.75 ft Ref Node: Max Depth: 3.00 ft Discharge Coefficients Max Width: 2.00 ft Weir Default: 3.200 Fillet: 0.00 ft Weir Table: Orifice Default: 0.600 Orifice Table: Orifice Table: Orifice Table: Orifice Table:	(horizontal grate)	Geometry Type:	Rectangular	Default: 0.00 ft
Control Elevation: 80.75 ft Ref Node: Max Depth: 3.00 ft Discharge Coefficients Max Width: 2.00 ft Weir Default: 3.200 Fillet: 0.00 ft Weir Table: Orifice Default: 0.600 Orifice Table: 0.00 ft Orifice Table: 0.00 ft		Invert:	80.75 ft	Op Table:
Max Depth:3.00 ftDischarge CoefficientsMax Width:2.00 ftWeir Default:3.200Fillet:0.00 ftWeir Table:Orifice Default:0.600Orifice Table:Orifice Table:Orifice Table:Orifice Table:		Control Elevation:	80.75 ft	Ref Node:
Max Width: 2.00 ft Weir Default: 3.200 Fillet: 0.00 ft Weir Table: Orifice Default: 0.600 Orifice Table: Orifice Table: Orifice Table:		Max Depth:	3.00 ft	Discharge Coefficients
Fillet: 0.00 ft Weir Table: Orifice Default: 0.600 Orifice Table:		Max Width:	2.00 ft	Weir Default: 3.200
Orifice Default: 0.600 Orifice Table:		Fillet:	0.00 ft	Weir Table:
Orifice Table:				Orifice Default: 0.600
				Orifice Table:
Weir Comment:	We	eir Comment:		

Drop Structure Comment:

Drop Structure Links Example DS#I: Understanding Velocity Reports

Drop Structure Links Example DS#I: Understanding Velocity Reports

Link Min/Max Conditi	ons [Scenario1]		•				
Link Name	Sim Name	Max Flow [cfs]	1 In Flow [cfs]	Min/Max Delta Flow	Max Us Velocity	Max Ds Velocity	Max Avg Velocity
				[cfs]	[fps]	[fps]	[fps]
P1-BDZ - Pipe	025Y-24H BINARY	6.81	0.00	-0.01	0.00	0.00	0.00
P1-BDZ - Weir: 1	025Y-24H BINARY	1.85	0.00	0.00	9.43	9.43	9.43
P1-BDZ - Weir: 2	025Y-24H BINARY	4.96	0.00	-0.01	3.70	3.70	3.70
P1-BDZ - Weir: 3	025Y-24H BINARY	0.00	0.00	0.00	0.00	0.00	0.00
P1-BDZ - Pipe	025Y-24H INC	6.81	0.00	-0.01	0.00	0.00	0.00
P1-BDZ - Weir: 1	025Y-24H INC	1.85	0.00	0.00	9.43	9.43	9.43
P1-BDZ - Weir: 2	025Y-24H INC	4.96	0.00	-0.01	3.70	3.70	3.70
P1-BDZ - Weir: 3	025Y-24H INC	0.00	0.00	0.00	0.00	0.00	0.00
P1-BDZ - Pipe	025Y-24H SPLIT	6.81	0.00	-0.01	3.08	4.47	3.63
P1-BDZ - Weir: 1	025Y-24H SPLIT	1.85	0.00	0.00	9.43	9.43	9.43
P1-BDZ - Weir: 2	025Y-24H SPLIT	4.96	0.00	-0.01	3.70	3.70	3.70
P1-BDZ - Weir: 3	025Y-24H SPLIT	0.00	0.00	0.00	0.00	0.00	0.00

Drop Structure Links

Example DS#1: Understanding Velocity Reports

Link Name	Sim Name	Max Flow [cfs]	Max U [fps]	Js Velocity	Max Ds Velocity [fps]	Max Avg Velocity [fps]
COMBINE wit	h INCREMENTS	S METHOD (like	ICPR	(3)		
P1-BDZ - Pipe	025Y-24H INC	6.81		• 0.00	0.00	0.00
P1-BDZ - Weir: 1	025Y-24H INC	1.85		9.43	9.43	9.43
P1-BDZ - Weir: 2	025Y-24H INC	4.96		3.70	3.70	3.70
P1-BDZ - Weir: 3	025Y-24H INC	0.00		0.00	0.00	0.00
			r			

COMBINE with BINARY SEARCH METHOD

velocities

P1-BDZ - Pipe	025Y-24H BINARY	6.81
P1-BDZ - Weir: 1	025Y-24H BINARY	1.85
P1-BDZ - Weir: 2	025Y-24H BINARY	4.96
P1-BDZ - Weir: 3	025Y-24H BINARY	0.00

→ 0.00	0.00	0.00
9.43	9.43	9.43
3.70	3.70	3.70
0.00	0.00	0.00

SPLIT METHOD

P1-BDZ - Pipe	025Y-24H SPLIT	6.81
P1-BDZ - Weir: 1	025Y-24H SPLIT	1.85
P1-BDZ - Weir: 2	025Y-24H SPLIT	4.96
P1-BDZ - Weir: 3	025Y-24H SPLIT	0.00

valid pipe velocities

→ 3.08	4.47	3.63
9.43	9.43	9.43
3.70	3.70	3.70
0.00	0.00	0.00

max flows match for the 3 solution methods

Drop Structure Links Example DS#2

Gate Structure S-96D and S-3 USJRB

Source: Star Controls

70

Lesson 3 - Hydraulics, Part 2

Drop Structure Links Example DS#2

Gate Structure S-96D and S-3

Source: Star Controls

© 2019, Streamline Technologies, Inc.

71

Lesson 3 - Hydraulics, Part 2

Drop Structure Links Example DS#2

era				Create		Delete		
	Main Grid Pipe Component Main Weir Component Main Weir Component Grid							
	Enter 'Comment'							

Name	S-3	
Scenario	SURFACE MODEL	
From Node	S96D-US	
To Node	S96D-DS	
Link Count	3	
Flow Direction	Both	
Solution	<i>split</i> must use "Split" method when	
	using operating tables	
Comment	Based on SJRWMD Structure data. Gated structure. Modify weir top clip operating table for operation schedule.	

MainTab
Drop Structure Links Example DS#2

Pipe Count	1]	Upstream	Downstream
Damping Threshold	0	Invert	13.53	13.53
Length	52	Manning's N	0.024	0.024
FHWA Culvert Code	0]	Geol	metry
Entrance Loss Coefficient	0] Туре	Circular 🔹	Circular
Exit Loss Coefficient	0.9	Max Depth	7	7
Bend Loss Coefficient	1]		
Bend Location	0]		
Energy Switch	Energy]		

Pipe Component Tab

Lesson 3 - Hydraulics, Part 2

Drop Structure Links Example DS#2

Name	1		Default Value	Operating Table
		Bottom Clip	0	
		Top Clip	0	S-3 Select Existing Item
		Weir Discharge Coefficient	3.2	Goto Existing Item
Weir Count	1	Orifice Discharge Coefficient	0.6	
Weir Flow Direction	Both 💌		nino diam	ator
Damping Threshold	0]	pipe diam	right click
Weir Type	Sharp Crested, Vertical	Max Depth	7	
Geometry	Rectangular 🗸	Max Width	6.5	
Invert	13.53	matches Fillet	0	
Control Elevation	13.53	pipe invert	pip	be diameter
			r	ninus 0.5'
Comment	SLUICE GATES - MODIFY OPERAT	TING TABLE TO ADJUST GATES		
Name	S-3	Top Clip Point Edit		÷ ×
Scenario	SURFACE MODEL	- X X B # B		•
Turne	Stage	Stage	Dep	th of Clip
rype	Slage		0	7
Comment	USED TO CONTROL BCWMA		23.03	/
			999	0

Weir Component Tab & Operating Table

Rating Curve Links Basics

- Rating curve links are a general-purpose tool for modeling many things like pump stations and bridges.
- At least one operating table must be set up prior to using the rating curve link.
- Although the link moves water from one node to another, it is the operating table that establishes the rates and conditions for flow.
- There are four types of operating tables that can be used with a rating curve link as listed above.

Rating curve links have the usual name, connectivity, count and flow direction parameters.

		_							
Name	Pump Station	Link Rating Curve Rating Curves Grid 🛛 🕂 🗙							
Scenario	Scenario1 💌	● \$P							
From Node	A		Rating Curve	Elevation On	Elevation On Node	Elevation Off	Elevation Off Node		
		Þ	Pump 1	102		101			
To Node	В		Pump 2	106	Lake 7	105.9	Lake 7		
Link Count	1	*							
Flow Direction	Both 👻								
Comment	A								
	•								
Create	Delete								

Specific operating tables are referenced in the grid on the right side of the data form under the "Rating Curve" column. There is no practical limit as to the number of operating tables that can be used.

On and off switches can be set for each referenced operating table using the "Elevation On" and "Elevation Off" columns in the grid. Think of these as level switches in a pump station. Link Rating Curve Rating Curves Grid Pump Station **д)** Name 29 29 良 咱 30 Scenario 1 Scenario Elevation Off Rating Curve Elevation On Elevation On Node Elevation Off Node From Node IA Pump 1 102 101 B 106 Lake 7 To Node 105.9 Lake 7 Pump 2 * Link Count 1 Both Flow Direction Comment Delete Create

When the "Elevation On Node" and "Elevation Off Node" are left blank, the default reference node is the "from node" for the link. As an option, reference nodes other than the "from node" can be specified.

Rating curve "links" require at least one rating curve "operating table". They can be used to establish relationships between flow and time, stage, or head. Also, a family of rating curves can be used to account for variable tailwater conditions.

<u>H</u> ydrology	1D Hydraulics	Reference Elements	<u>S</u> imulation	Rep <u>o</u> r	ts <u>W</u> ind	ow	He <u>l</u> p	
	<u>N</u> odes							
	All <u>L</u> ink Typ	bes			Nar	ne		
	<u>C</u> hannel Lir <u>P</u> ipe Links.	nks			Scena	rio	Scena	rio1 🔹
	<u>W</u> eir Links.				Ту	pe	Upstre	am Stage 🗾 🔻
	<u>D</u> rop Struc <u>R</u> ating Curv Bre <u>a</u> ch Link <u>F</u> rench Dra Percola <u>t</u> ion C <u>h</u> annel Cr Weir Cross	ture Links ve Links ks in Links Links oss Sections Sections			Comme	nt	Upstread Time Head Family o	n Stage f Curves
	Operating	Tables	Botto <u>m</u> Clip <u>T</u> op Clips Variable <u>W</u> e Variable Ori	s eir Coef ifice Co	fficients			
			Rating <u>C</u> urv	ves		6	<u> </u>	

80

icp

A family of rating curves is a set of stage-discharge relationships for various tailwater conditions. It is also possible to build a family of rating curves in HEC-RAS, copy those rating curves into the clipboard, and paste them into the ICPR rating curve data form by clicking the HEC-RAS Paste button. This is particularly useful for modeling bridges.

Name		Ra	ating Curve Point Edit		□ Ŧ X
Scenario	Scenario1 🔹		4 X L 2 L 4		
Туре	Family of Curves 🔹		Tailwater	Headwater	Discharge
Comment					
	(F			
		Ľ	HEC-RAS Paste		
		Ra	ating Curve Point Chart		□ 7 ×

ICPR performs a double linear interpolation to extract a discharge rate for a given tailwater and headwater elevation combination.

If the tailwater and headwater elevations are outside the range, then the extrapolation rules on the following slides are used

85

Lesson 3 - Hydraulics, Part 2

86

Lesson 3 - Hydraulics, Part 2

Percolation Links	
C <u>h</u> annel Cross Sections W <u>e</u> ir Cross Sections	
Operating <u>T</u> ables	Botto <u>m</u> Clips <u>T</u> op Clips Variable <u>W</u> eir Coefficients <u>V</u> ariable Orifice Coefficients <u>Rating Curves</u>

Name	P-0.25 "P-0.25"	Rating Curve Point Edit						
Scenario	Scenario1 🔹	•	▶ ೫ ೫ ₽ ₽Upstream Stage (ft)	Discharge (cfs)				
Туре	Upstream Stage 🔻		Upstream Stage	Discharge				
Comment			999	0.25 cfs 0.25				

Name	P-0.75 "P-0.75"	Ra	iting Curve Point Edit		3 4 X
Scenario	Scenario1 🔹		• X X 🖪 🥵 🛍		
Type	Upstream Stage		Upstream Stage	Discharge	
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			0).75
Comment	A		999	0.75 CIS ().75
			•		

<u>Hydrology</u>	1D Hydraulics Reference Elemen						
	<u>N</u> odes						
	All <u>L</u> ink Typ	es					
	Channel Links						
	Pipe Links						
	<u>W</u> eir Links.						
	<u>D</u> rop Struc	ture Links					
	Rating Curv	/e Links					
	Bre <u>a</u> ch Links						
	Erench Drain Links						
	Dercolation	Linke					

Name	PUMP STATION	L	Link Rating Curve Rating Curves Grid							
Scenario	Scenario1 🔹	ŀ	Poting Curve		Elevation (n Nodo	Elevation Off	Elevation O	ff Nodo	
From Node	POND	Þ	P-0.25	90.5	Elevation C	nnoue	90	Elevation O	II NOUE	
To Node	BDZ		P-0.75	92.5	K		92			
Link Count	1		P-0.75	95 di	fforont		94.5			
Flow Direction	Both	three pumps for each pump								
Comment						ach p	anp			

Lesson 3 - Hydraulics, Part 2

Example RC#2: Roadway Pump Station & Drain Well

This example is taken from the publication "ICPR Applications Manual" (January 2008) prepared by ADA Engineering for the FDOT District 6.

Example RC#2: Roadway Pump Station & Drain Well

HEAD LOSS CALCULATION FOR MODIFICATION OF PUMP CURVE eq. 1 - Head Loss (Hazen-Williams Formula) eq. 2 - Head Loss by Fittings and Valves Hf=0.002083*L(100/C)^1.85(Q^1.85/d^4.8655) Hf=K(V^2/2g)									
Gravity (g)	32.2	ft/sec^2	-						
Hydraulic Diameter (d)	18	inch	Fitting #	Description	Quantity	Loss Coef. (K)			
Resistance Coefficient (C)	140			1 90d elbow		4 0.55			
Pipe Length (L)	20	ft		2 Reducer (36"-12")		1 0.21			
		Velocity - V	Hf	Hf	Hf	Hf			
Flow Rate - Q	Flow Rate - Q	(18" pipe)	(pipe)	(90d elbow)	(reducer)	(total)			
(gpm)	(cfs)	(fps)	(ft)	(ft)	(ft)	(ft)			
1400.590	3.12	1.77	0.01	0.11	0.01	0.13			
1572.170	3.50	1.98	0.01	0.13	0.01	0.16			
1743.320	3.88	2.20	0.02	0.17	0.02	0.20			
1913.660	4.26	2.41	0.02	0.20	0.02	0.24			
2082.640	4.64	2.63	0.02	0.24	0.02	0.28			
2249.570	5.01	2.84	0.03	0.27	0.03	0.33			
2413.870	5.38	3.04	0.03	0.32	0.03	0.38			
2575.140	5.74	3.25	0.04	0.36	0.03	0.43			
2733.350	6.09	3.45	0.04	0.41	0.04	0.48			
2888.820	6.44	3.64	0.04	0.45	0.04	0.54			
3042.200	6.78	3.84	0.05	0.50	0.05	0.60			
3194.390	7.12	4.03	0.05	0.55	0.05	0.66			
3346.260	7.46	4.22	0.06	0.61	0.06	0.72			
3498.690	7.80	4.41	0.06	0.66	0.06	0.79			
3652.180	8.14	4.60	0.07	0.72	0.07	0.86			
3806.990	8.48	4.80	0.07	0.79	0.08	0.94			
3962.740	8.83	5.00	0.08	0.85	0.08	1.01			
4119.030	9.18	5.19	0.08	0.92	0.09	1.09			
4275.180	9.53	5.39	0.09	0.99	0.09	1.18			
4430.910	9.87	5.59	0.10	1.07	0.10	1.27			
4586.300	10.22	5.78	0.10	1.14	0.11	1.35			
4742.070	10.57	5.98	0.11	1.22	0.12	1.45			

Example RC#2: Roadway Pump Station & Drain Well

	Head from	Hf losses due		ICPR	
Flow Rate - Q	chart	to friction	Resultant Head	Head Value	Flow Rate - Q
(gpm)	(ft)	(ft)	(ft)	(ft)	(cfs)
1400.59	26.458	0.13	26.33	-26.33	3.12
1572.17	25.415	0.16	25.25	-25.25	3.50
1743.32	24.368	0.20	24.17	-24.17	3.88
1913.66	23.318	0.24	23.08	-23.08	4.26
2082.64	22.255	0.28	21.97	-21.97	4.64
2249.57	21.179	0.33	20.85	-20.85	5.01
2413.87	20.086	0.38	19.71	-19.71	5.38
2575.14	18.964	0.43	18.53	-18.53	5.74
2733.35	17.826	0.48	17.34	-17.34	6.09
2888.82	16.661	0.54	16.12	-16.12	6.44
3042.2	15.483	0.60	14.88	-14.88	6.78
3194.39	14.295	0.66	13.64	-13.64	7.12
3346.26	13.101	0.72	12.38	-12.38	7.46
3498.69	11.917	0.79	11.13	-11.13	7.80
3652.18	10.732	0.86	9.87	-9.87	8.14
3806.99	9.554	0.94	8.62	-8.62	8.48
3962.74	8.380	1.01	7.37	-7.37	8.83
4119.03	7.205	1.09	6.11	-6.11	9.18
4275.18	6.024	1.18	4.85	-4.85	9.53
4430.91	4.836	1.27	3.57	-3.57	9.87
4586.3	3.645	1.35	2.29	-2.29	10.22
4742.07	2.448	1.45	1.00	-1.00	10.57

Rating Curve Links Example RC#2: Roadway Pump Station & Drain Well

Percolation Links	
C <u>h</u> annel Cross Sections W <u>e</u> ir Cross Sections	
Operating <u>T</u> ables ►	Botto <u>m</u> Clips <u>T</u> op Clips Variable <u>W</u> eir Coefficients <u>V</u> ariable Orifice Coefficients <u>Rating Curves</u>

Name	P_OPT_4000	L
Scenario	Scenario1 🔹	L
Туре	Head 🗾	L
Comment		

Example RC#2: Roadway Pump Station & Drain Well

	Rating Curve Point B	Edit		🗖 🕈 🗙
PT 4000	+ 🗴 🕅 🗛 🖉	P.		
-	Head		Discharge	
nario1	F	-26.36		3.12
1		-25.29		3.5
		-24.21		3.88
		-23.13		4.26
		-22.03		4.64
		-20.92		5.01
		-19.79		5.38
		-18.62		5.74
		-17.44		6.09
		-16.23		6.44
		-15.01		6.78
		-13.77		7.12
		-12.53		7.46
		-11.29		7.8
		-10.05		8.14
		-8.82		8.48
		-7.58		8.83
		-6.34		9.18
		-5.09		9.53
		-3.84		9.87
		-2.58		10.22
		-1.3		10.57

Name

Туре

Scenario

Comment

P O

Scer

Head

Rating Curve Links Example RC#2: Roadway Pump Station & Drain Well

Rating Curve Links Example RC#2: Roadway Pump Station & Drain Well

Injection Drainage Well Operating Table Injection drainage wells are used frequently in southeast Florida as a means of disposing stormwater runoff because of limited open space for stormwater ponds and because of the high conductivities of the aquifer system.

Additional head is required when the injection well discharges below the salt water interface line because of different water densities.

The additional head requirement is calculated as:

$$h_3 = 0.025 (h_1)$$

Example RC#2: Roadway Pump Station & Drain Well

In this example, the injection well is 90 feet deep and penetrates 80 feet beyond the salt water interface. Therefore, the additional head, h₃, necessary to overcome the density differences between fresh and salt water is 2 feet ($0.025 \times 80 = 2.0$). The ambient water table is at elevation 2.0'. Therefore, a minimum water elevation of 4.0 feet is needed to push fresh water into the salt water. The well capacity is 700 gpm per foot of head up to elevation 8.0 feet at which point an overflow occurs to a surface outlet. Therefore, the upstream stage versus discharge relationship is as follows (per the original FDOT example):

<u>Upstream Stage (ft)</u>	<u>Discharge (cfs)</u>
4.0	0.00
8.0	6.24
30.0	6.24

Name	W_OPT_700		
Scenario	Scenario1 🔹		
Туре	Upstream Stage		
Comment			

[Rat	ing Cur	ve Point	t Edit						🗖 🕂 🗙
	H	X	X F		Ņ	ĄĮ	Ē			
		Upstre	am Stag	je					Discharge	
	Þ	•						4		0
								8		6.24
								30		6.24

<u>H</u> ydrology	1D Hydraulics	Reference Elements						
	<u>N</u> odes							
	All Link Types							
	<u>C</u> hannel Lir	iks						
	Pipe Links							
	<u>W</u> eir Links.							
	Drop Structure Links							
	<u>R</u> ating Curve Links							
	Breach Links							
	Erench Drain Links							
	Dorcolation	Linke						

Name	S6_PUMPS
Scenario	Scenario 1 💌
From Node	S6+B
To Node	S6+C
Link Count	1
Flow Direction	Both 💌

E	Link Rating Curve Rating Curves Grid 🛛 🗛 🗙								
•	🛨 🕺 🕺 🖻 🚇								
	Rating Curve Elevation On Elevation On Node Elevation Off Elevation Off Node								
Þ	P_OPT_4000	5			1.5				
	P_OPT_4000	5.33			1.5				

<u>H</u> ydrology	1D Hydraulics	Reference <u>E</u> lements es ks ture Links		s			
	Nodes						
	All Link Types						
	Channel Links						
	<u>P</u> ipe Links						
	Weir Links						
	Drop Structure Links						
	<u>R</u> ating Curv	/e Links					
	Bre <u>a</u> ch Link	(S	12				
	<u>F</u> rench Dra	in Links					
	Dorcolation	Linke					

Name	S7_WELL		
Scenario	Scenario1 🔹		
From Node	S7		
To Node	GROUND		
Link Count	1		
Flow Direction	Both 💌		

L	Link Rating Curve Rating Curves Grid							
•	🛨 🏌 🏹 🗈 🤐 🕋 📇							
Γ	Rating Curve	Elevation On	Elevation	On Node	Elevation Off	Elevation Off Node		
►	W_OPT_700	2			2			

Example RC#2: Roadway Pump Station & Drain Well

Rating Curve Links

Example RC#2: Roadway Pump Station & Drain Well

Rating Curve Links

Example RC#2: Roadway Pump Station & Drain Well

110

HEC-RAS

When modeling unsteady flow in HEC-RAS, bridges must be preprocessed to develop a family of rating curves. The rating curves are then used during the routing process rather than the actual bridge hydraulics.

📑 HEC-RA File Edit	S 5.0.3 Run View Options GIS Tools Help	– 🗆 X
Project: Plan: Geometry: Steady Flow:	Steady Flow Analysis Unsteady Flow Analysis Sediment Analysis Water Quality Analysis Hydraulic Design Functions	Image: Second state Image: Second state<
Unsteady Flo Description :	Run Multiple Plans Run RAS-MODFLOW Coupled Model Uncertainty Analysis	US Customary Units

HEC-RAS

Make sure the "Geometry Preprocessor" option is checked under "Programs to Run". Then click the "Compute" button at the bottom of the Unsteady Flow Analysis data form.

」。Unsteady Flow Analysis		\times
File Options Help		
Plan :	Short ID	
Geometry File :	Bridge 1Geom	-
Unsteady Flow File :		•
Programs to Run ✓ Geometry Preprocessor Unsteady Flow Simulation Sediment Post Processor Floodplain Mapping	Plan Description :	
Simulation Time Window Starting Date: Ending Date:	Starting Time: Ending Time:	
Computation Settings Computation Interval: 1 M Mapping Output Interval: 1 H Computation Level Output	inute Hydrograph Output Interval: 1 Hour Detailed Output Interval: 1 Hour	•
DSS Output Filename: C:\Work	shop\Bridge\HEC_RAS_Model\Bridge.dss	ð
	Compute	

HEC-RAS

Open the bridge/culvert data form and click the "Htab Curves" icon.

HEC-RAS

The bridge rating curves appear ... click the "Full Table" tab to see the values.

HEC-RAS

Click the "Select All" button in the upper left corner of the grid. Press "Ctrl C" to copy the rating curves into the clip board.

Use User Edited Curves in Computations Get Defaults From HTab											
Plot Full Table											
	Flow (cfs)	Elev (ft)	Flow (cfs)	Elev (ft)	Flow (cfs)	Elev (ft)	Flow (cfs)	Elev (ft)	Flow (cfs)	Elev (ft)	Fl -
낪	0	68.2099991	0	68.8251038	0	69.2062225	0	69.5873489	0	69.9684677	
2	23.06954	69.3765488	5.767385	69.0335007	3.3549228	69.3104706	6.7644567	69.6912079	11.0291576	70.0710068	16
3	57.6738472	69.8465424	6.7971973	69.0676117	6.7098455	69.3231049	13.5289135	69.7034225	22.0583153	70.0822296	3:
4	138.4172363	70.523201	7.8270092	69.0967789	10.0647678	69.3434753	20.2933693	69.7234344	33.087471	70.1020355	48
5	230.6953888	71.0891571	8.8568211	69.1147232	13.4196911	69.3699722	27.057827	69.7507553	44.1166306	70.129425	64
6	346.0430908	71.6722641	9.8866329	69.1322479	16.7746124	69.4020996	33.8222809	69.7850647	55.1457863	70.1614838	8(
7	461.3907776	72.1646805	10.9164448	69.1501083	20.1295357	69.4386139	40.5867386	69.8241119	66.174942	70.2017746	9
8	576.7384644	72.5975723	11.9462566	69.1683655	23.4844589	69.487648	47.3511963	69.8691711	77.2041016	70.2490997	11
9	692.0861816	72.9840775	12.9760685	69.1868896	26.8393822	69.5352554	54.115654	69.9213715	88.2332611	70.3031921	128
10	807.4338379	73.3421402	14.0058804	69.2056351	30.1943054	69.5660706	60.8801117	69.9744339	99.2624207	70.3613358	14
11	922.7815552	73.6798706	15.0356932	69.2245865	33.5492287	69.5967941	67.6445694	70.0143967	110.2915802	70.4228821	160
12	1038.1292725	73.9953461	16.065506	69.2437057	36.9041519	69.6288605	74.4090271	70.0561218	121.3207321	70.47435	176
13	1153.4769287	74.2957382	17.0953178	69.2631226	40.2590714	69.6621933	81.1734772	70.1000977	132.349884	70.5283737	
14	1268.824585	74.5762482	18.1251297	69.2824326	46.629097	69.6965332	93.6460876	70.1480026	138.4172363	70.5498199	208
15	1384.1723633	74.8507614	19.1549416	69.3017807					142.7574158	70.5498199	228
16	1499.5200195	75.1030121	20.1847534	69.3215637							
17	1614.8676758	75.3568802	21.2145653	69.341156							
18	1730.2154541	75.5972137	22.2443771	69.3607712							
19	1845.5631104	75.8247452	22.7575245	69.3607712							
20	1960.9107666	76.0486679									
21	2076.2585449	76.2635498									
22	2191.6062012	76.4736633									
23	2306.9538574	76.6740112									
24	2422 2015127	76 0675/01									. [

OK

Cancel

	<u>H</u> ydrology	1D Hydraulics	Reference Elements	<u>S</u> imulation	Rep <u>o</u> rts	<u>W</u> indow	He <u>l</u> p
ICFR		<u>N</u> odes					
Open the "Rating Cur	ves"	All <u>L</u> ink Typ	bes				
		<u>C</u> hannel Lir	nks				
"Operating lables"		Pipe Links					
		Weir Links.					
		Drop Struc	ture Links				
		Rating Curv	/e Links				
		Eronch Dra	in Linke				
		Percolation	Links				
		Channel Ca					
		C <u>n</u> annei Cr	Sections				
		wen cross	Sections				-
		Operating	Tables	Botto <u>m</u> Clip	S		
				Top Clips			
				Variable <u>W</u> e	eir Coeffic	ients	
			_	variable Or	ITICE COEff	icients	
				Rating <u>C</u> urv	/es	<u></u>	

ICPR

Create a new Rating Curve table named "Bridge I". Set the "Type" to "Family of Curves".

Rating Curve Data			
Men <u>u</u> - 📓 💽 🔼 🧮 Az Az	🚳 🏋 🕜		
Rating Curve List 🛛 📮 🗙	Name	Bridge 1	Rating Curve Point Edit
Name	Scenario	Scenario 1	+ X X B 2 A
Bridge 1	Туре	Family of Curves 🔹	Tailwater
1	Comment	A	
Main	Create	Delete	
[ft] Enter 'Tailwater'			1 Rating Curve(s)

ICPR

Click the "HEC-RAS Paste" button.

Name	Bridge 1	Ra	Rating Curve Point Edit 🛛 🖶 🗙				
Scenario	Scenario 1		1 第 2 年 2 年 2 年 2 年 4 年 2 年 2 年 4 年 2 年 2 年				
Туре	Family of Curves 🔹		Tailwater	Headwater	Discharge		
Comment		H	EC-RAS Paste				
		Ra	ting Curve Point Chart			0 9 X	
				Bridge 1			

<u>H</u> ydrology	1D Hydraulics	Reference Elemen	ts <u>S</u> imulation
	<u>N</u> odes		
	All <u>L</u> ink Typ		
	<u>C</u> hannel Lir		
	<u>P</u> ipe Links	.	
	<u>W</u> eir Links.		
	Drop Struc	ture Links	
	<u>R</u> ating Curv	ve Links	
	Bre <u>a</u> ch Link	(s 📈	
	<u>F</u> rench Dra	in Links	
	Dercolation	Linke	

Name	Bridge 1	Li	Link Rating Curve Rating Curves Grid 🛛 🕂 🗙						
Scenario	Scenario1		• XI X 🖹 🤱	l 🖻 🖴					
From Nodo	N005		Rating Curve	Elevation On	Elevation On Node	Elevation Off	Elevation Off Node		
FIOIII Node	1090	₽	Bridge 1	68.2		68.2			
To Node	N095		T						
Link Count	1	right click							
Flow Direction	Both 🔻	to select							
Comment									

<u>S</u> imulation	Rep <u>o</u> rts <u>N</u>	<u>N</u> indow He	<u>l</u> p				
	Mass <u>B</u> <u>S</u> imple <u>M</u> anua	alance Basins Basins	• •				
	1D <u>N</u>	Reports : 1D	inks - Time Series				X
	1D <u>L</u> i	~ Reports. To	Links - Time Selles				^
	P <u>r</u> inta		Year		Month	Day	Hour
	Lin <u>k</u> I	Start Time		0		0	
	Proce	End Time	0	0			999
		Report Cha	rt			Simulation Selection	Item Selection
		Type X Parameter	Superimpose 1D links Absolute Time	 ✓ Y Para ✓ Flow Ra ○ US Link ○ US Link ○ US Xsec ○ DS Xsec ○ US Velo ○ DS Velo ■ Avg Velo 	meter Selection te End Stage End Stage Area Area city city poity	Scenarios	 ○ 094C ○ 095C ○ 097C ○ 098C ✓ Bridge 1
		Units View Report Help	N/A View Chart	★	1 Sele	cted Item(s) in Selected Simulatic	pn(s)
		0					

<u>S</u> imulation	Rep <u>o</u> rts	<u>W</u> indow	He <u>l</u> p		
	Mass Simpl	<u>B</u> alance e Basins		*	
<u>M</u> anual Basins				×	
	1D <u>N</u> odes			×	<u>T</u> ime Series 📐
	1D <u>L</u> ii	nks		×	Volume
	P <u>r</u> inta	able		×	<u>M</u> ax
	Lin <u>k</u> F	Path Mana	ger		Aggregate
	Proce	ess Poly <u>g</u> o	ns		

ᠵ Reports : 1D Nodes	s - Time Series				– 🗆 X
	Year	Month		Day	Hour
Start Time	0	0	0		0
End Time	0	0	0		9999
Repor Chart Type 5 X Parameter	Superimpose 1D nodes Relative Time	Y Parameter Selection Time Step Triggers/Levels ✓ Stage Warning Stage Surface Area Base Inflow Rate Basin Inflow Rate External Inflow Rate Link Inflow Rate Link Outflow Rate		Simulation Selection Scenarios Scenario1 Simulations Simulations	Item Selection N093 N094 N095 N095 N096 N096 N097 N098

Sim: Sim 1

126 © 2019, Streamline Technologies, Inc.

Next Webinar – Lesson 4: Hydraulics, Part 3

Thursday October 31, 2019 11:30 – 1:30 (EDT)

We will try to post a recording of this webinar and/or the presentation material as soon as we can. To find them: "Check for Updates" sometime tomorrow.

support@icpr4.com