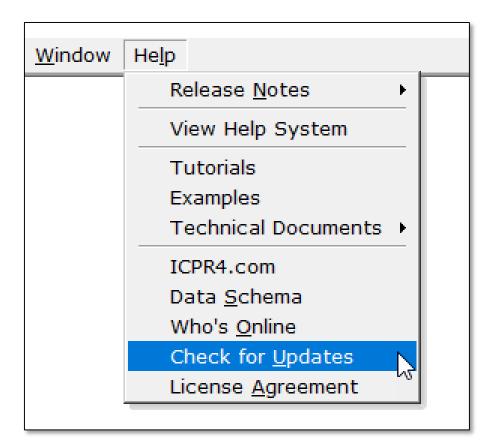
ic

Regulatory Review Webinar Series


Lesson 2 Hydraulics, Part 1

> Peter J. Singhofen Streamline Technologies, Inc.

Wednesday – October 23, 2019

Next Webinar – Lesson 3: Hydraulics, Part 2

Tuesday October 29, 2019 11:30 – 1:30 (EDT)

We will try to post a recording of this webinar and/or the presentation material as soon as we can. To find them: "Check for Updates" sometime tomorrow.

support@icpr4.com

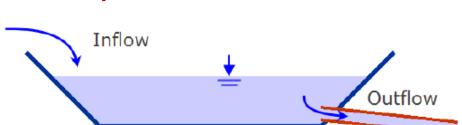
Objectives of the Regulatory Review Webinar Series

- Learn details of ICPR4 computational methods
- Learn about input data requirements
- Learn about ICPR4's reporting system

Objectives of the Regulatory Review Webinar Series

- Learn details of ICPR4 computational methods
- Learn about input data requirements
- Learn about ICPR4's reporting system

What's not included:


- 2D overland flow
- 2D groundwater
- Details of the graphical user interface
- Importing/drawing background images, map layers and surfaces

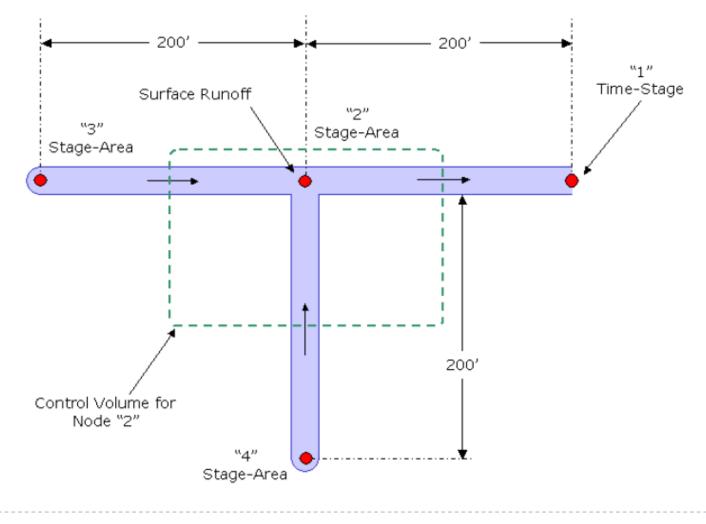
Lesson 2 Topics

- Nodes
 - Mass Balance Equation
 - Node Types
- Links
 - General
 - Pipes
 - Channels
- Examples
 - Highway Cross Drain & Channel
 - Integrated Storm Sewer Hydraulics and Pond Routing for a Commercial Site

Nodes Mass Balance Equation

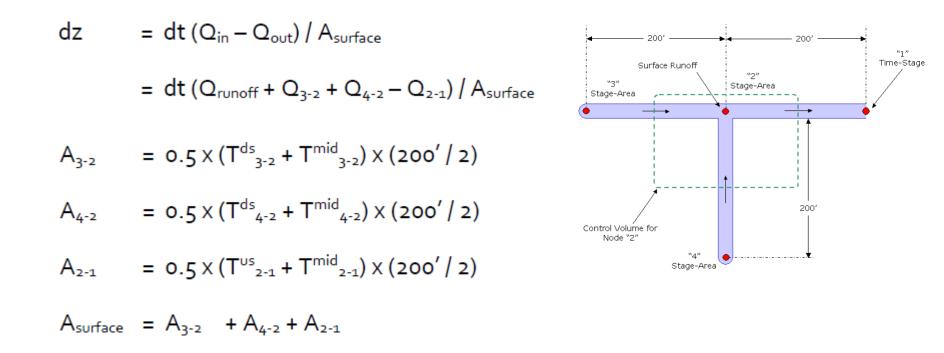
 $dz = dt (Q_{in} - Q_{out}) / A_{surface}$

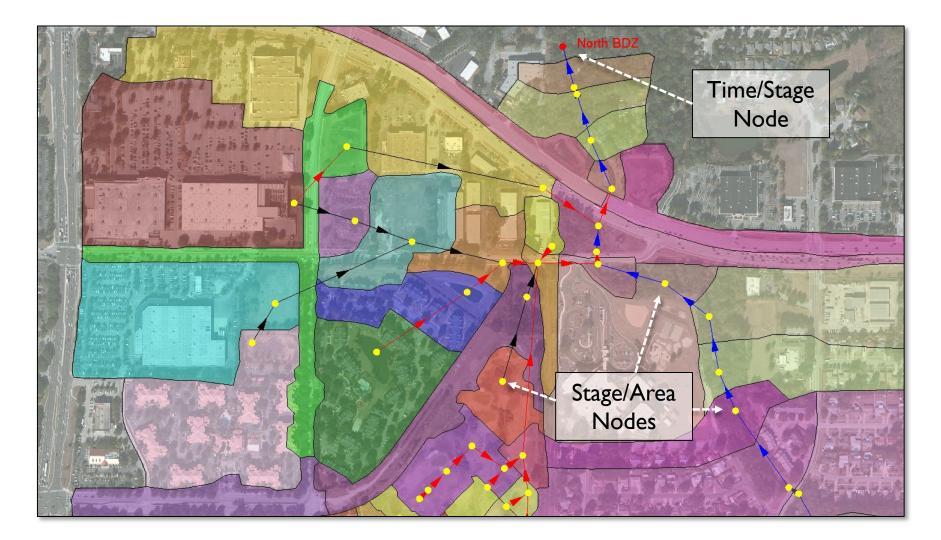
where,


6

- dz change in stage
- dt change in time, or simply, the time increment
- Q_{in} combined or total inflow rate
- Q_{out} combined or total outflow rate

A_{surface} surface area associated with the node


$$Z^{1} = Z^{o} + dz$$


Mass Balance Equation

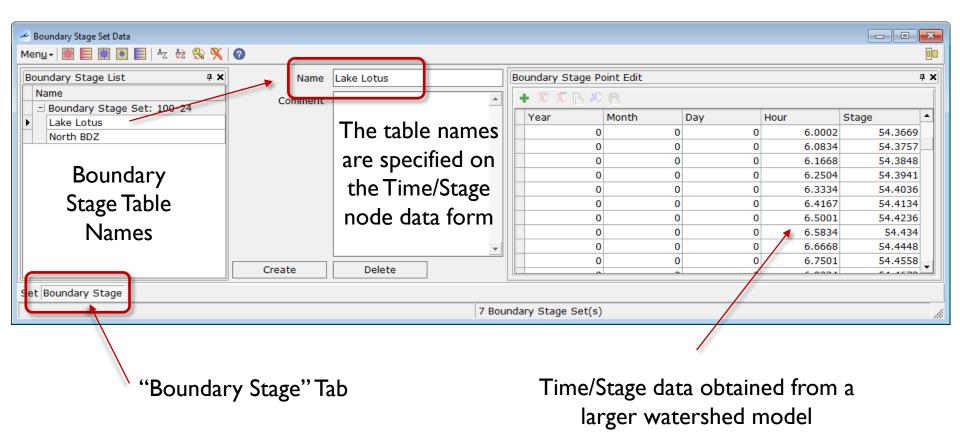
7

Nodes Mass Balance Equation

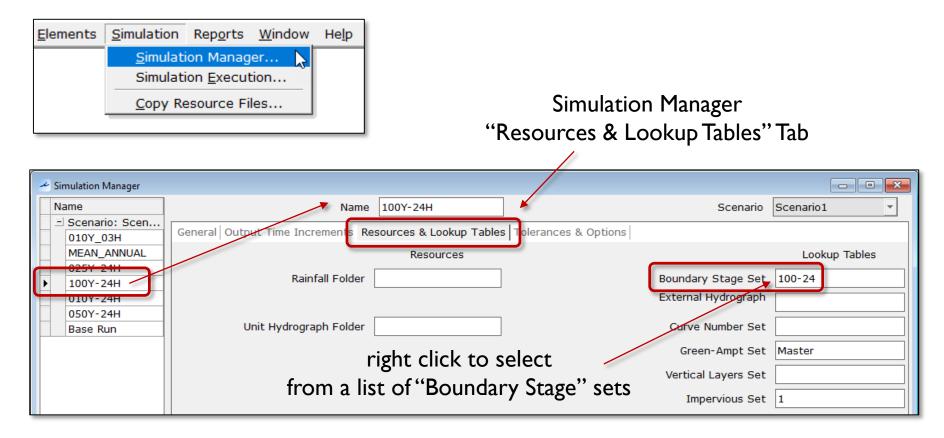
9

Time/Stage Nodes

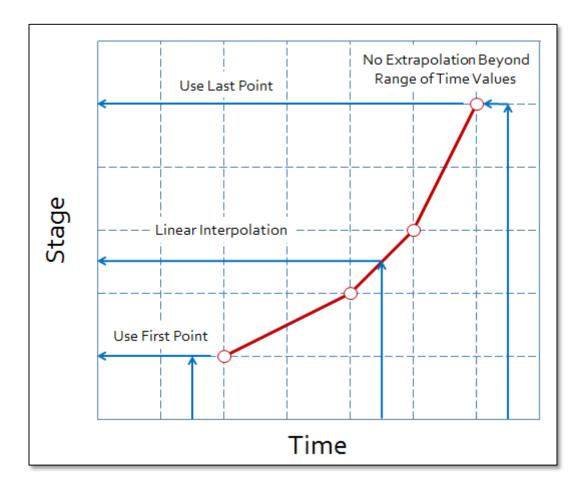
Time/Stage nodes serve as outlets for the surface water system. Instead of calculating stage from the mass balance equation, stage is forced from a time versus stage table.


Name	North BDZ	Node Poi	nt Edit				
Scenario	Scenario1 💌	+ X	X B X	Ē.			
Туре	Time/Stage 🔹	Year		Month	Day	Hour	Stage
Base Flow	0		lf time	e/stage tab	le is left	blank, the <mark>In</mark>	itial
Initial Stage	40 4		Stage	is used thi	roughout	the simulati	on
Warning Stage	53		un	less a <mark>Bour</mark>	odary Sta	table is	
Boundary Stage	North BDZ		specif		iddi y Stag		
Comment			speen				

Node Data Form

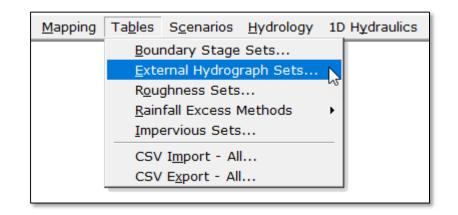

Nodes Boundary Stage Tables

Mapping Tables Scenarios Hydrology 1D Hydraulics Boundary Stage Sets External Hydrograph Sets External Hydrograph Sets Roughness Sets Rainfall Excess Methods Impervior Impervior	
CSV Imp	
$CSV Exp \qquad Menu \bullet \boxed{\blacksquare} \boxed{\blacksquare} \boxed{\blacksquare} \boxed{\blacksquare} \boxed{A_Z} \stackrel{A_Z}{\otimes} $	
Boundary Stage Set List	Name 100-24
Name 010-24 025-24 050-24 100-24 010-03 MEAN_ANNUAL_24 Base Run	Comment A boundary stage "set" is a collection of time/stage tables. A "set" is typically provided for each storm to be simulated.
"Set" Names	
	Create Clone Delete
"Set" Tab	7 Bounda

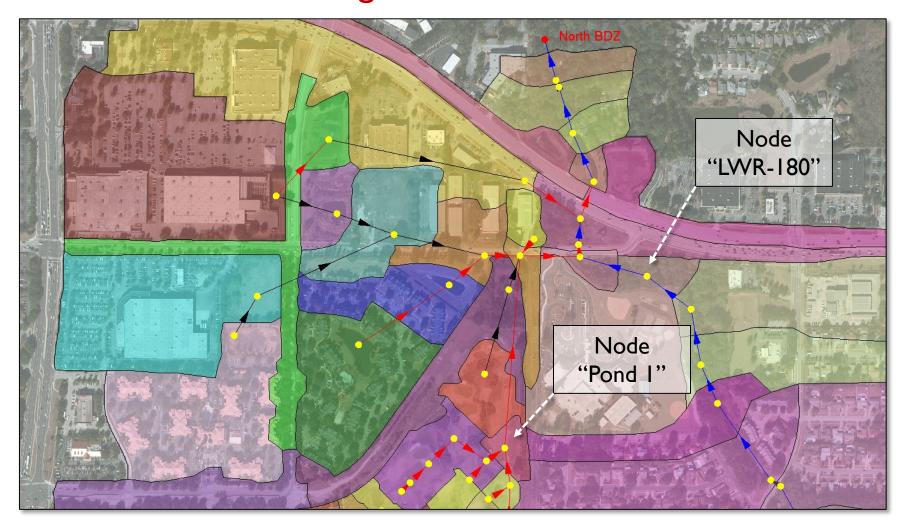

Nodes Boundary Stage Tables

Nodes Boundary Stage Tables

Time/Stage Table Interpolation


Time/Stage Precedence

- The initial stage on the node data form is used for the entire simulation if a time/stage table is not provided.
- If a time/stage table is provided on the node data form, it overrides the initial stage.
- If a boundary stage table is specified for the node, it overrides the initial stage and the stage/area table on the node data form.


Nodes External Hydrographs

Node External Hydrographs Grid • X X R & R &	← Node Data Form
Externa	

- "External Hydrographs" are similar to "Boundary Stage" tables, except instead of forcing stages, flows are added to the node.
- They can be assigned to any node type.
- External hydrographs are optional.
- There is no limit as to the number of external hydrographs that can be assigned to a given node.

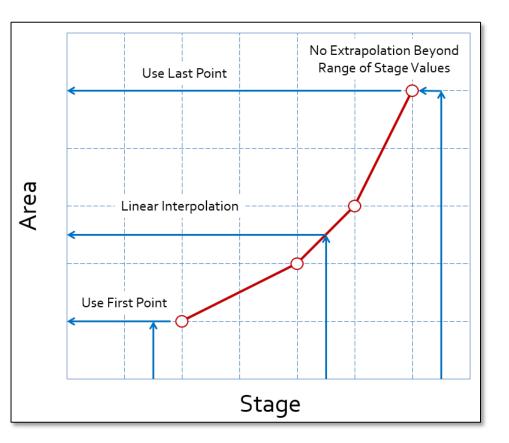
Nodes Stage/Area Nodes

17

Stage/Area Nodes

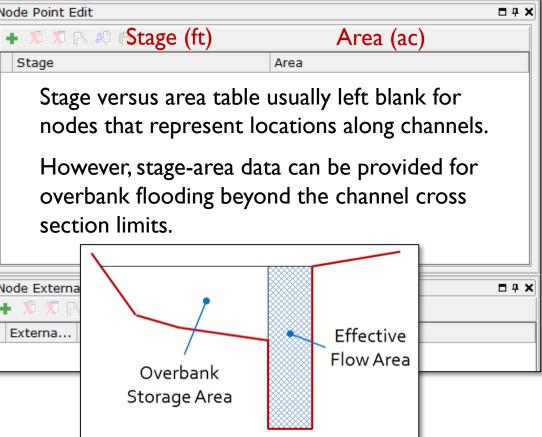
Name	Pond 1	Node Point Edit		□ 7 ×
Scenario	Scenario1 🔹	+ 🗴 🗴 🖻 🦓 🗳 Stage (ft)	Area (ac)	
Туре	Stage/Area 🔹	Stage	Area	
		▶ 74	0.300	643
Base Flow	0	74.25	0.318	641
Initial Stage	74	74.5	0.323	324
Initial Stage		74.75	0.343	893
Warning Stage	82	75	0.354	362
		75.25	0.369	238
		75.5	0.377	376
Comment		75.75	0.399	197
		76	0.406	244
		76.25		
		76.5	0.435	221
		Node External Hydrographs Grid		□ ₽ ×
		+ 🗶 🗶 🕒 🖉		
		Externa		

Stage versus area table usually provided for nodes that represent ponds, lakes and depressions


18

Node "Pond I"

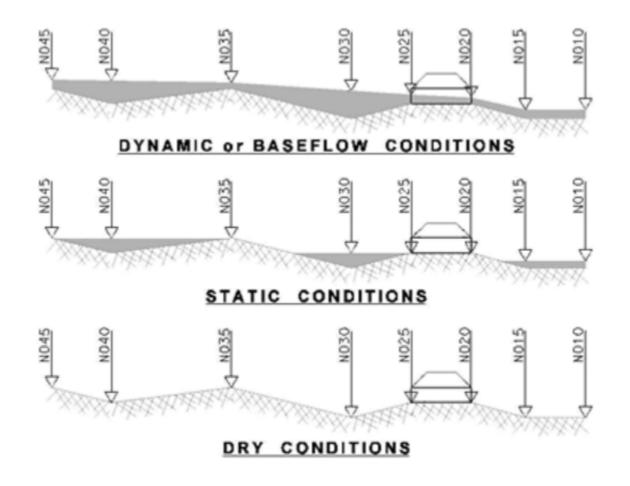
Stage/Area Table Interpolation


If a channel link and/or a pipe link is attached to a node and the water level drops below the first data point in the stage/area table, the surface area for the node is derived completely from the links.

Otherwise, ICPR uses the area specified for the first data point.

Stage/Area Nodes

Name	LWR-180		Node Point Ed	lit
Scenario	Scenario1	•	+ X X F	L 🕫 🗗
Туре	Stage/Area	•	Stage	
Base Flow	0		Stag	e vers
Initial Stage	43.5		node	es tha
Warning Stage	58		Ном	vever,
				bank
Comment		_		ion lir
			Secu	
			Node Externa	
			Externa	
	1			
	11		1	-
				S

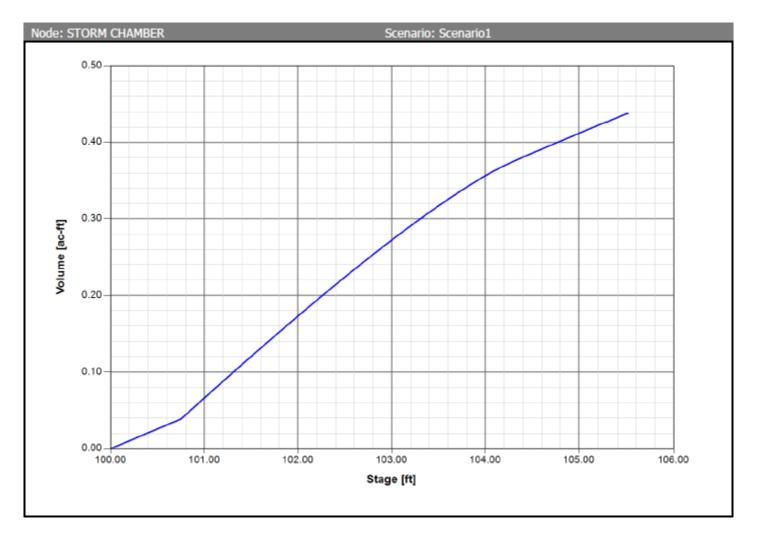

Node "LWR-180"

Base Flow, Initial Stage, Warning Stage

Base Flow	0
Initial Stage	43.5
Warning Stage	58

- Base Flow a constant (steady-state) flow rate. Positive value for inflow, negative value for outflow.
- Initial Stage water surface elevations used at the start of a simulation. Initial link flows are calculated based on initial stages. Time-stage tables override the initial stage.
- Warning Stage an optional parameter used to identify potential problems such as street flooding or out-of-bank flooding. Warning stages are not used for hydraulic computations but do appear in various reports and charts.

Nodes Initial Stage


22

Stage/Volume Nodes

- Stage/volume nodes are converted to stage/area nodes at runtime using a reverse average-end-area method.
- At least 3 points are needed for the conversion.
- The accuracy of the conversion from stage/volume to stage/area improves with more points.

Nodes Storm Chambers

Name	STORM CHAMBER		Node Point Edit			
Scenario	Scenario1 🔹		+ 🗴 🗴 🕒 🦀			
Туре	Stage/Volume		Stage	Volume 🔺		
			► 100	0		
Base Flow	0		100.083333	0.004304		
Initial Change	100		100.166667	0.008609		
Initial Stage	100		100.25	0.012913		
Warning Stage	105.5		100.333333	0.017218		
5 5			100.416667	0.021522		
			100.5	0.025826		
Comment	Used StromTech Calculator to		100.583333	0.030131		
connene	develop Z-V table.		100.666667	0.034435		
			100.75	0.03874		
	100 MC-3500 chambers		100 833333	0 047054		
	10 Endcaps	1				
	9 inches of stone base		Node External Hydrographs Grid	□		
	12 inches stone cover		🗕 🎗 🎗 🖪 🤐 🖺 📇			
	stone porosity 0.40	Г	Externa			
	. ,	F				
	pit dimensions 75ft x 75ft		Stage/Volume node	es are typically used		
	stone base elev = 100.0 ft					
	stone top elev = 105.5 ft		for storm	chambers		

StormTech Calculator

	С	D	E	F	G	Н		J	K	L
1										
2	Project:						<u>.</u>			
3						0				
4	Chambe	r Model -		MC-3500	1	Storr	nlech			
5	Units -			Imperial	Click Here for Metric		Internation • Retention • Water Quality			
6	Number	of Chambers -		100		A div	ision of EALE			
7	Number	of End Caps -		10						
8	Voids in	the stone (porosity)) -	40	%					
9		STONE Elevation -		100.00	ft 🔽 In	clude Perimeter Sto	one in Calculations			
10		of Stone Above Cha		12	in 🛄	cloce i crimeter ste	ine in calculations			
11		of Stone Below Cha	ambers -	9	in					
12	Area of	system -		5625	st Min. Area -	5305 sf min. a	rea			
13										
14	StormT	ech MC-3500) Cumulativ	e Storage	Volumes					
	Height of	Incremental Single		Incremental	Incremental	Incremental	Incremental Ch,	Cumulative		
15	System	Chamber	Single End Cap	Chambers	End Cap	Stone	EC and Stone	System	Elevation	
16	(inches)	(cubic feet)	(cubic feet)	(cubic feet)	(cubic feet)	(cubic feet)	(cubic feet)	(cubic feet)	(feet)	
17	66	0.00	0.00	0.00	0.00	187.50	187.50	19061.57	105.50	
18	65	0.00	0.00	0.00	0.00	187.50	187.50	18874.07	105.42	
19	64	0.00	0.00	0.00	0.00	187.50	187.50	18686.57	105.33	
20	63	0.00	0.00	0.00	0.00	187.50	187.50	18499.07	105.25	
21	62	0.00	0.00	0.00	0.00	187.50	187.50	18311.57	105.17	
22 23	61 60	0.00	0.00	0.00	0.00	187.50	187.50	18124.07	105.08	
23	60 59	0.00	0.00	0.00 0.00	0.00 0.00	187.50 187.50	187.50 187.50	17936.57 17749.07	105.00 104.92	
24	59	0.00	0.00	0.00	0.00	187.50	187.50	177661.67	104.92	-
	< • •	Cumulative Volu			olumes Metric		107 80		:	•

CULTEC Calculator

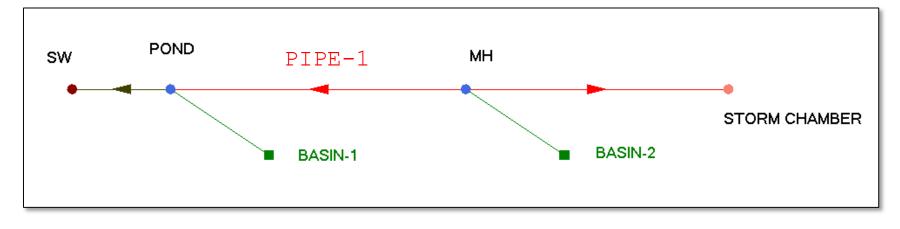
	A	В	С	D	E	F	G	Н		
1					ALE	540	1-2			
2										
4		差 🛛 The Fou	under of Plastic	Chamber Te	hnology					
5			v.cultec.com • 1	1(800)4-CU	ltec 🊽					
6	CULTE			(,				JOINNOV C		
7 8	00112						-			
	Project Info	rmation:	Date:							
9	i i oject ilito									
10 11					-					
12					-					
13					-					
14							•			
15 16	Chamber Mode		Contactor 100HD				-			
17	Number of Row		1	units						
	Total number of		1	units						
19	HVLV SFCx2 Fee		-	units						
	Stone Void -		40	%						
	Stone Base -		6	inches						
22	Stone Above Ur	nits -	6	inches						
23	Area -		49.97	ft²	49.97	Min. Area Require	ed			
24	Base of Stone E	levation-	100.00	ft		Note: Min. Area requ	ired is based on			
25 26						12" around the syste	em and typ. spacin	g		
27									1	
			6			(
20			Contactor	100HD Incren	nental Storage \	Volumes				
28										
	Height of System	Chamber Volume	HVLV Feed Connector Volume	Stone Volume	Cumulative Storage Volume	Total Cumula Volu	-	Elevation		
	oyacen	Volume	connector volume		storage volume	Volu				
29										
30	in	ft ³	ft3	ft ³	ft ³	ft ³	Acre-ft	ft		
31 32	24.5	0.00	0.00	1.67	1.67	49.84	0.00114	102.04		
32	23.5	0.00	0.00	1.67	1.67	48.17	0.00111	101.96		_
		README Cu	mulative Volume- In	nperial (+)			•		Þ

Pipe & Channel Links

Data Forms

Name			Name	
Scenario	Scenario1 🔹		Scenario	Scenario1 🔹
From Node			From Node	
To Node			To Node	
Link Count	1	_	Link Count	1
Flow Direction	Both 🔻		Flow Direction	Both 💌
Damping Threshold	0		Damping Threshold	0
Length	0		Length	0
FHWA Culvert Code	0		Contraction Coefficient	0
Entrance Loss Coefficient	0		Expansion Coefficient	0
Exit Loss Coefficient	0		Entrance Loss Coefficient	0
Bend Loss Coefficient	0		Exit Loss Coefficient	0
Bend Location	0		Bend Loss Coefficient	0
Energy Switch	Energy 🔹		Bend Location	0
D . 1.			Energy Switch	Energy 🔻
Pipe Link Data Form				

Channel Link Data Form

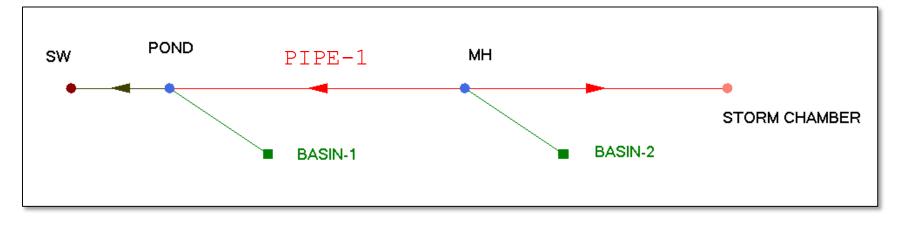

Pipe & Channel Links General Considerations

- Connectivity
- Count
- Flow Direction
- Damping Threshold
- Energy Switch

Pipe & Channel Links General Considerations - Connectivity -

Name		PIPE-1		
	Scenario	Scenario1	•	
	From Node	MH	positive	
	To Node		flow	
	Link Count	1		
Flow Direction		Both		
Damping Threshold		0		

- Links are used to move water "from" one node "to" another node
- Connectivity is established by setting a "from node" (upstream node) and a "to node" (downstream node)
- The positive flow direction is established with the connectivity

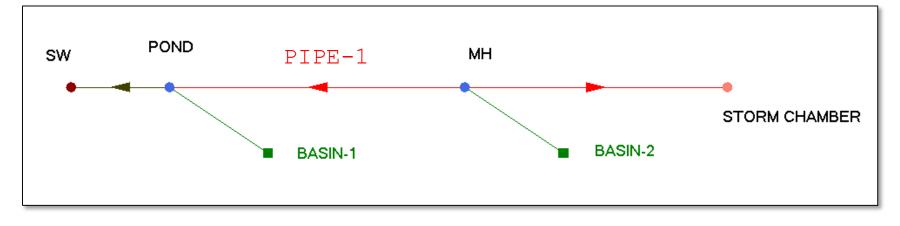


30

Pipe & Channel Links General Considerations - Link Count -

	Name	PIPE-1
Scenario		Scenario1 🔹
	From Node	МН
	To Node	POND
	Link Count	1
Flo	ow Direction	Both 💌
Damping Threshold		0

- The link count is the number of identical links connecting the same two nodes
- It is always a positive integer
- Flow is calculated for one link and then that flow is multiplied by the "Link Count"

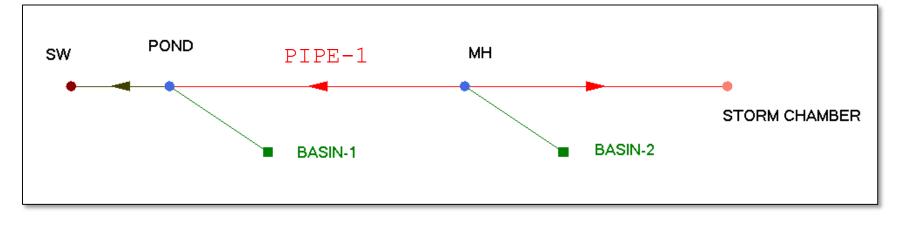


31

Pipe & Channel Links General Considerations - Flow Direction -

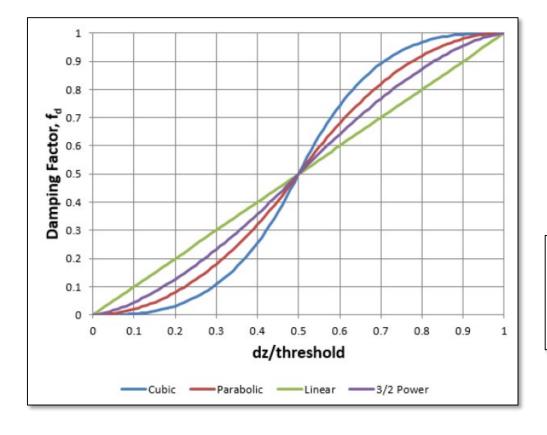
	Name	PIPE-1
	Scenario	Scenario1 🔹
	From Node	МН
	To Node	POND
	Link Count	1
	Flow Direction	Both 💌
Damping Threshold		0

- "Both" allows flow in the positive and negative directions
- "Positive" only allows flow in the direction of the defined connectivity
- "None" turns the link off, but retains the link data in the project



32

Pipe & Channel Links General Considerations - Damping Threshold -


Name	PIPE-1
Scenario	Scenario1 🔹
From Node	МН
To Node	POND
Link Count	1
Flow Direction	Both 💌
Damping Threshold	0

- This parameter can be used to help smooth out instabilities
- It is normally set to zero on the link data form unless there is a problematic link
- Typically, values range from 0.0001' to 0.01' when used, and should rarely exceed 0.1'

33

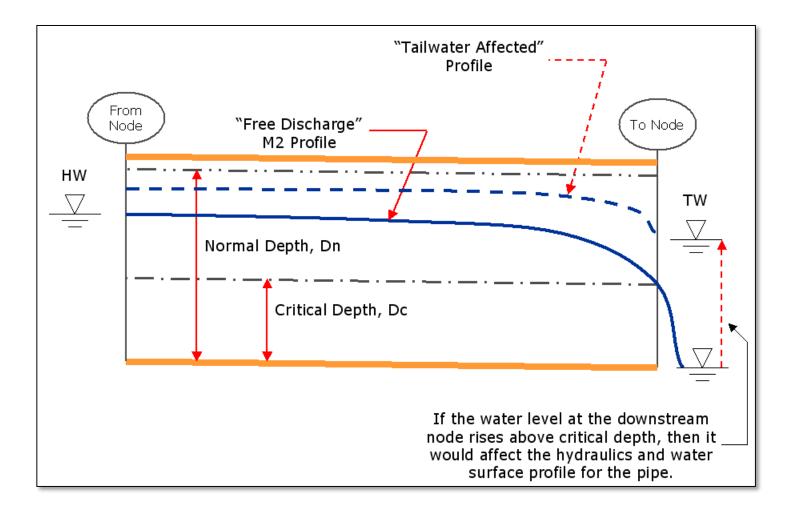
Pipe & Channel Links General Considerations - Damping Threshold -

When the absolute value of the difference in water levels at both ends of a link fall within the specified "Damping Threshold", the calculated flow is reduced in accordance with the equation below.

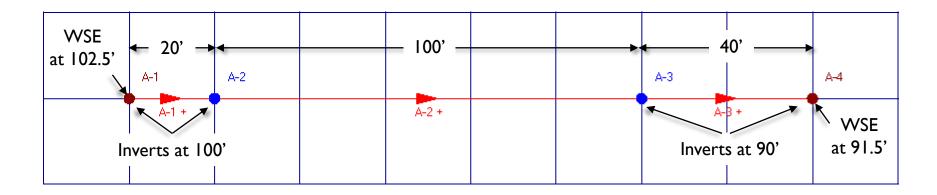
$$Q' = f_d Q$$

where, Q', is the reduced flow.

The parabolic function is currently used in ICPR.


Pipe & Channel Links Energy Switch

Bend Location	0
Energy Switch	Energy
	Energy
	Momentum
	Diffusive Wave
	×


$$\begin{array}{ll} \text{Momentum} \\ \text{(St. Venant Eq)} & \frac{\partial Q}{\partial t} + \frac{\partial \left(Q^2 / A\right)}{\partial x} + gA \frac{\partial Z}{\partial x} + gAS_f + gA \left(h_{eddy} + h_{entrance} + h_{exit} + h_{bend}\right) = 0 \\ \\ \text{Energy} & Z_1 + \frac{V_1^2}{2g} = Z_2 + \frac{V_2^2}{2g} + h_f + h_{eddy} + h_{entrance} + h_{exit} + h_{bend} \\ \\ \text{Diffusive Wave} & Z_1 + = Z_2 + h_f + h_{eddy} + h_{entrance} + h_{exit} + h_{bend} \end{array}$$

35

Pipe & Channel Links Subcritical Flow (Outlet Control)

Subcritical & Supercritical Pipe Transitions

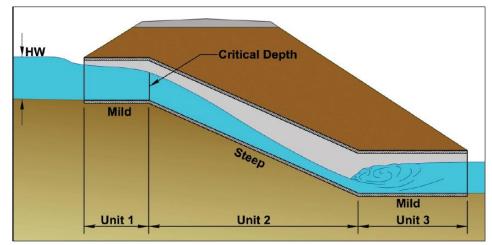
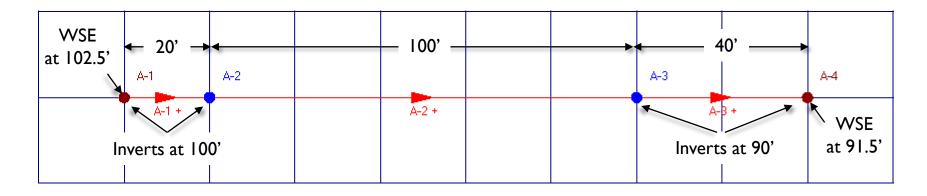
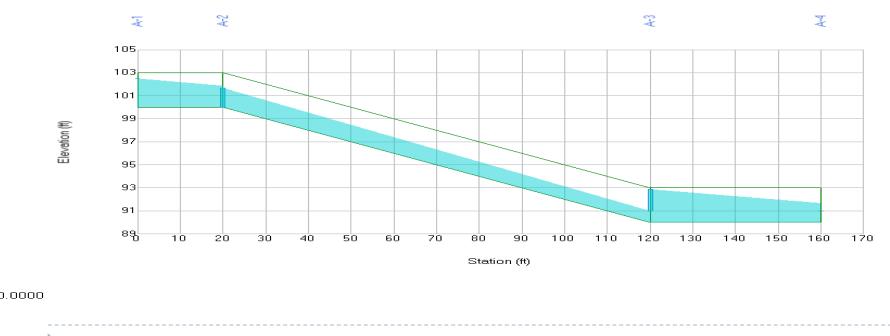
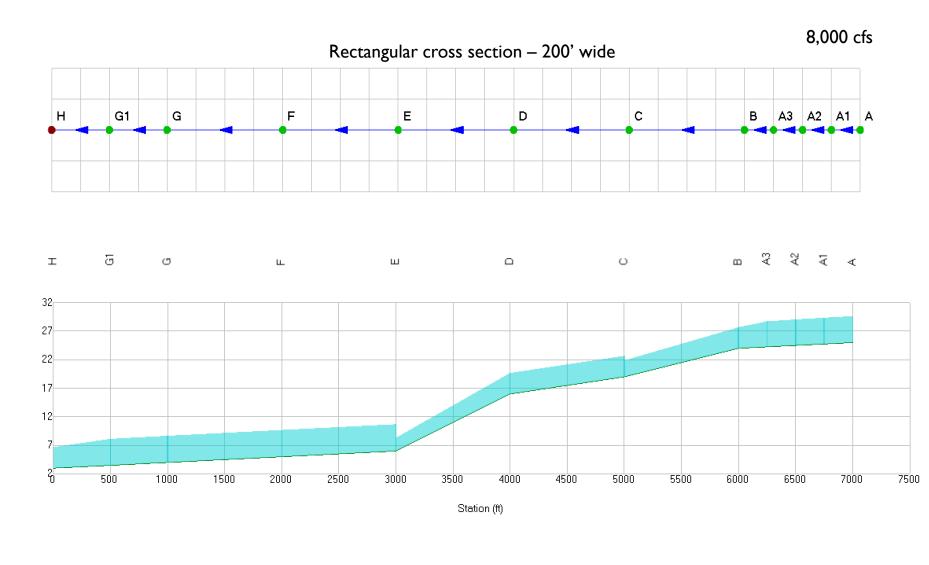
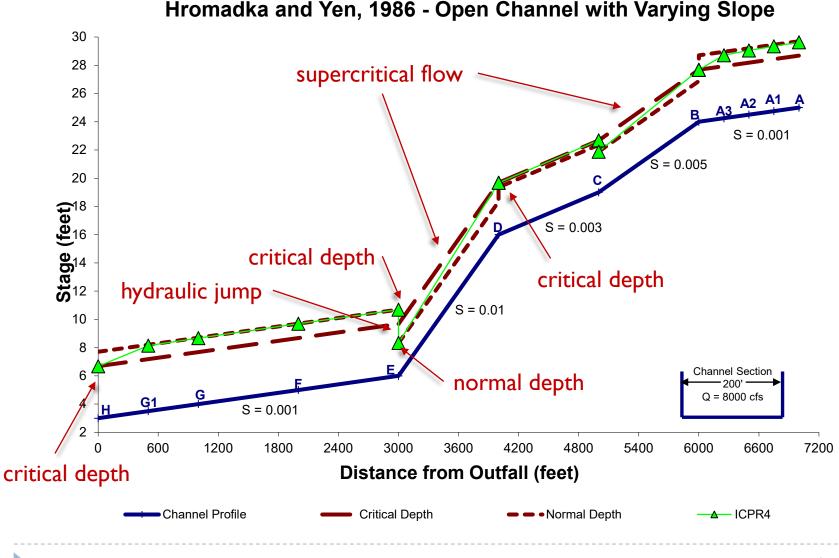




Figure 5.22. Three-unit broken-back culvert.

Source: FHWA 2012 "Hydraulic Design of Highway Culverts" 3rd Edition


Subcritical & Supercritical Pipe Transitions

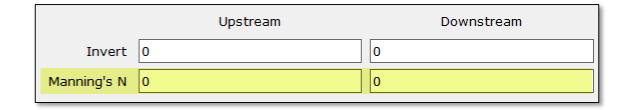
38


Subcritical & Supercritical Channel Transitions

Elevation (ft)

39

Subcritical & Supercritical Channel Transitions



40

Pipe & Channel Links Friction Minor Losses

- Friction Loss
- Contraction/Expansion Loss (channels only)
- Entrance Loss
- Exit Loss
- Bend Loss

Pipe & Channel Links Friction Loss

$$h_f = L\overline{S}_f$$

The friction slope is derived from Manning's Equation as follows:

$$S_f = (Q/K)^2$$

$$K = \frac{1.486R^{2/3}A}{n}$$

Pipe & Channel Links

Friction Loss

Average Conveyance:

$$S_{f_{avg}} = \frac{4Q^2}{\left(K_1 + K_2\right)^2}$$

Average Friction Slope:

$$S_{f_{avg}} = \frac{Q^2 \left(1/K_1^2 + 1/K_2^2 \right)}{2}$$

Geometric Mean Friction Slope:

$$S_{f_{avg}} = Q^2 \left(\frac{1}{K_1^2 K_2^2}\right)^{1/2}$$

Harmonic Mean Friction Slope:

$$S_{f_{cryg}} = 2Q^{2} \left[\frac{1}{\left(K_{1}^{2}K_{2}^{2}\right) \left(1/K_{1}^{2} + 1/K_{2}^{2}\right)} \right]$$

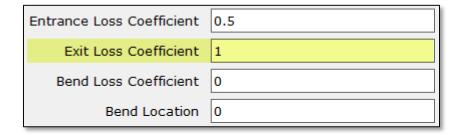
ICPR includes several friction slope averaging techniques. These are automatically applied and depend on the flow regime.

Channel Links

Contraction/Expansion Loss Coefficients

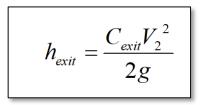
Contraction Coefficient	0
Expansion Coefficient	0

Subcritical Flow Contraction and Expansion Coefficients				
Contraction Expansion				
No transition loss computed	0.0	0.0		
Gradual transitions	0.1	0.3		
Typical bridge sections	0.3	0.5		
Abrupt transitions	0.6	0.8		
Source: HEC-RAS Reference Manual				


$$h_{eddy} = C_{eddy} \left[\frac{V_1^2}{2g} - \frac{V_2^2}{2g} \right]$$

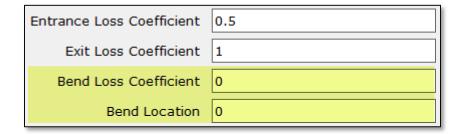
- Eddy losses account for contracting or expanding flow from one end of a channel link to the other.
- They do not account for contractions or expansions beyond the extents of the channel link.
- The eddy loss for a channel link is a function of the velocity heads at its upstream and downstream ends.

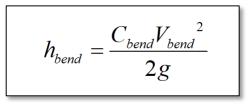
Pipe & Channel Links **Entrance Loss Coefficient**

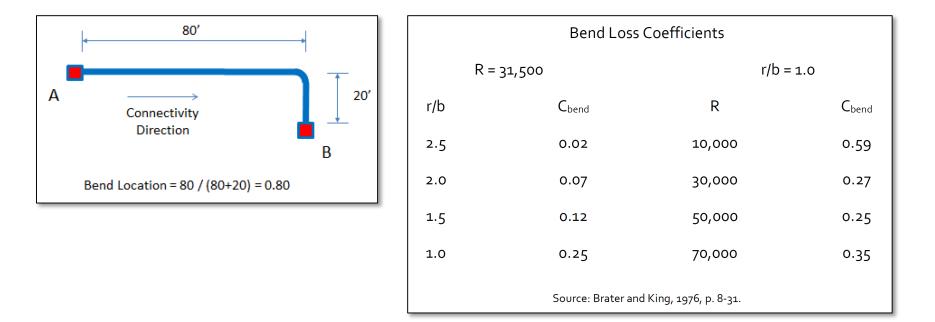

			Press "FI" key for list of
Entrance Loss Coefficient	0.5		entrance loss coefficients
Exit Loss Coefficient	1		entrance loss coemcients
Bend Loss Coefficient	0		$C V^2$
Bend Location	0		$h_{entrance} = \frac{C_{entrance}V_1}{2}$
			2g
Table C	.2. Entrance Loss Coefficients.		
	Full or Partly Full Entrance Head Lo = $Ke\left[\frac{V^2}{2g}\right]$	555	
Type of Structure and Design of E	ntrance	Coefficient Ke	
Pipe, Concrete		I	
Projecting from fill, socket end (Projecting from fill, sq. cut end Headwall or headwall and wing Socket end of pipe (groove-	walls	0.2 0.5 0.2	
Square-edge Rounded (radius = D/12 Mitered to conform to fill slope *End-Section conforming to fill s Beveled edges, 33.7 [°] or 45 [°] be Side- or slope-tapered inlet		0.5 0.2 0.7 0.5 0.2 0.2	Partial listing of entrance loss coefficients for pipes

Pipe & Channel Links Exit Loss Coefficient

The exit loss coefficient, C_{exit} , can vary from 0 to I and, in general, depends on the differences in velocities between the outlet of the pipe and immediately downstream of the outlet.


- If exit velocity is expected to drop to zero or near zero after leaving a pipe or channel outlet, then $C_{exit} = 1.0$
- If exit velocity is expected to be unchanged, then $C_{exit} = 0.0$




	Cext = (Vpipe ² - Vdownstream ²) / Vpipe ²				
Or,	Or, from the following table:				
	(V _{pipe} / V _{downstream})				
	or C _{ext}				
	(A _{downstream} / A _{pipe})				
	1.00	0.000			
	1.10	0.174			
	1.25	0.450			
	1.50	0.556			
	1.75	0.673			
	2.00	0.750			
	3.00 0.889				
	4.00	0.938			
	8.00	0.984			
	infinity 1.000				

Pipe & Channel Links

Exit Loss Coefficient

Pipe Links FHWA Inlet Control Equations

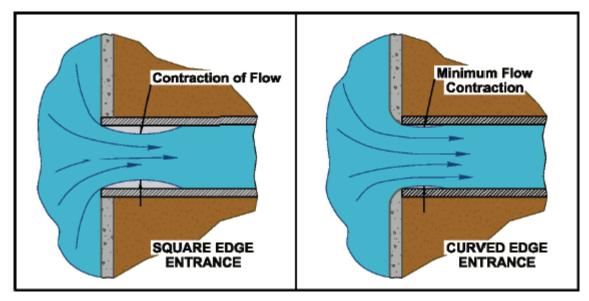


Figure 1.9. Entrance contraction.

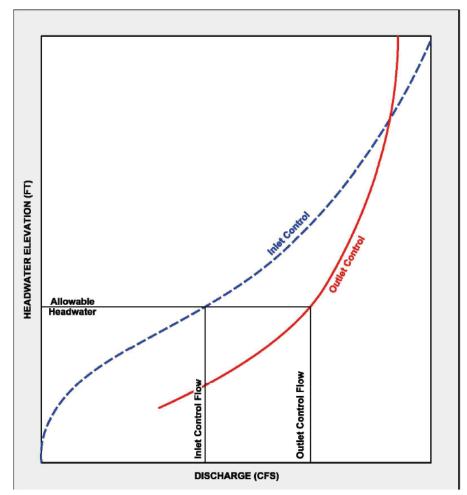
Source: FHWA 2012 "Hydraulic Design of Highway Culverts" 3rd Edition

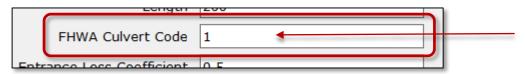
48

Pipe Links FHWA Inlet Control Equations

Unsubmerged: Form 1: Q = AD^{1/2}[{($z_1 - H_c$)/D +0.5S}/K]^{1/M} Form 2: Q = AD^{1/2}[z_1 /(DK)]^{1/M} Submerged: Q = AD^{1/2}[(z_1 /D - Y + 0.5S)/c]^{1/2}

When a non-zero FHWA control code is specified for a pipe link, ICPR calculates *flows for both inlet and outlet control* and then *uses the most restrictive*. Normal depth at the pipe outlet is used for inlet control.




Figure 1.19. Culvert performance curve.

Source: FHWA 2012 "Hydraulic Design of Highway Culverts" 3rd Edition

50

Pipe Links FHWA Culvert Code

Press "FI" key for list of FHWA codes

- If FHWA code set to zero, critical depth at entrance used for supercritical flow
- Normal depth is used at the pipe outlet for inlet controlled pipes

	FHWA Culvert Code	Shape and Material	Inlet Configuration
-	0	FHWA Inlet Control Option Not Used	
	1	Circular Concrete	Square edge w/headwall
	2	Circular Concrete	Groove end w/headwall
	3	Circular Concrete	Groove end projecting
	4	Circular CMP	Headwall
	5	Circular CMP	Mitered to slope
	6	Circular CMP	Projecting
	7	Circular	Beveled ring, 45° bevels
_	8	Circular	Bovolod ring an 7º bovole*

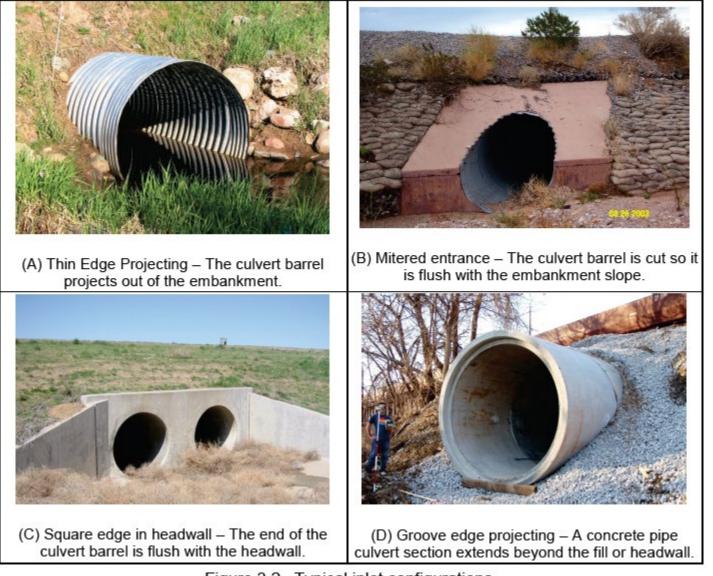


Figure 3.2. Typical inlet configurations.

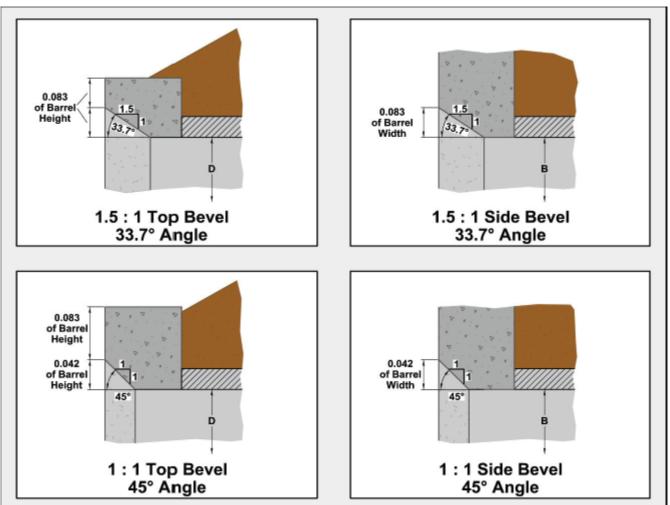
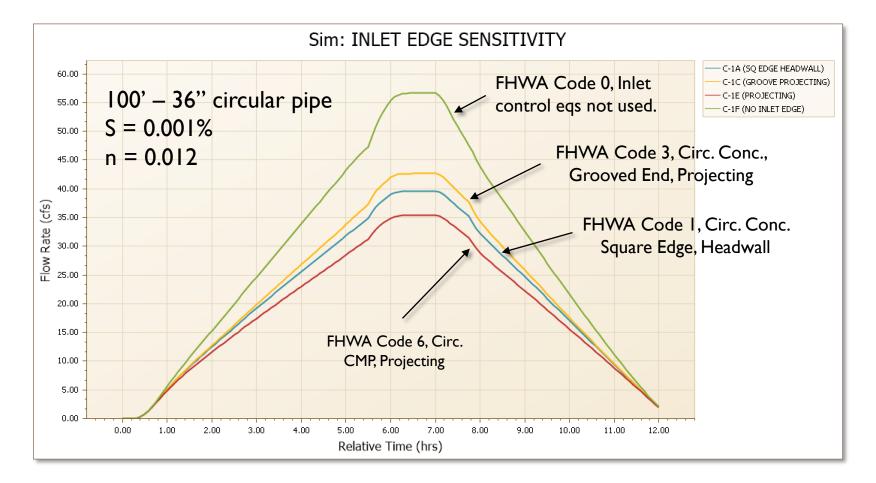
Source: FHWA 2012 "Hydraulic Design of Highway Culverts" 3rd Edition

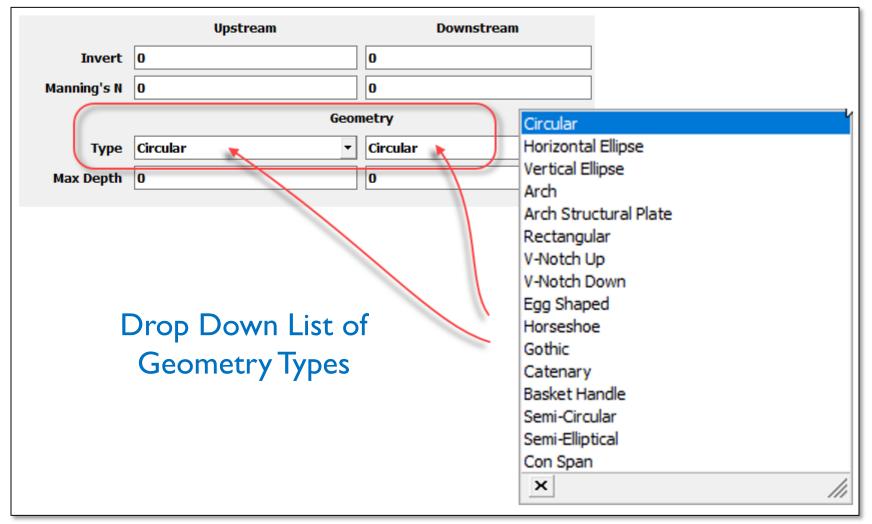
52

Figure 1.8. Four standard inlet types.

Source: FHWA 2012 "Hydraulic Design of Highway Culverts" 3rd Edition

53

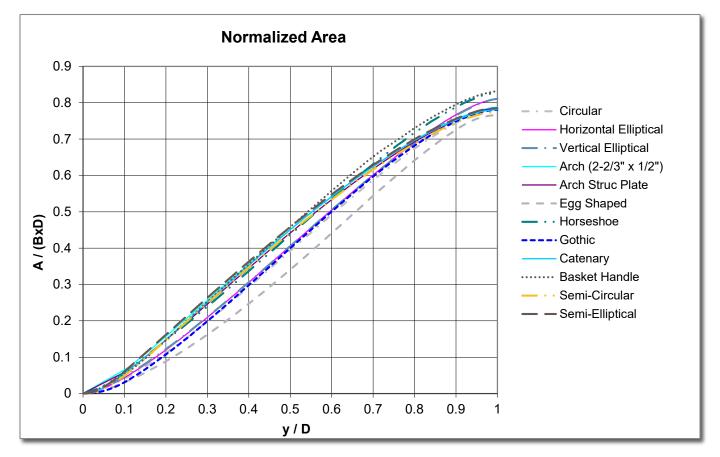




Figure 3.3. Beveled edges.

Source: FHWA 2012 "Hydraulic Design of Highway Culverts" 3rd Edition

Pipe Links FHWA Inlet Control – Does it Matter?

Geometric Considerations

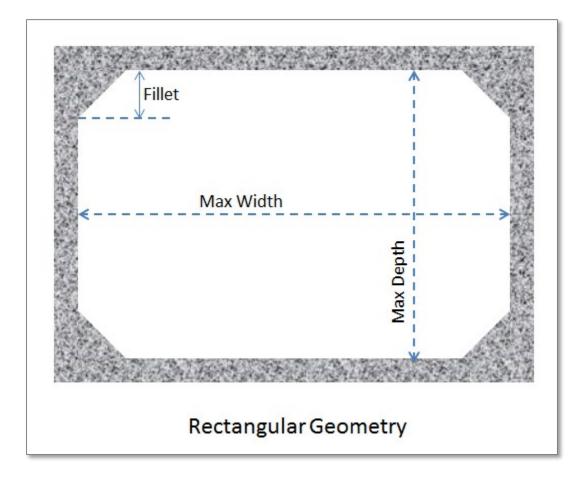

56

Geometric Considerations

Geometry Type		Geometry Type		Geometry Type	
Circular		Rectangular		Gothic	
H-Elliptical		V-notch Up		Catenary	
V-Elliptical		V-notch Down		Basket handle	
Arch (2-2/3" x 1/2")		Egg Shaped		Semi-Circular	
Arch Structural Plate		Horseshoe		Semi-Elliptical	

Geometric Considerations

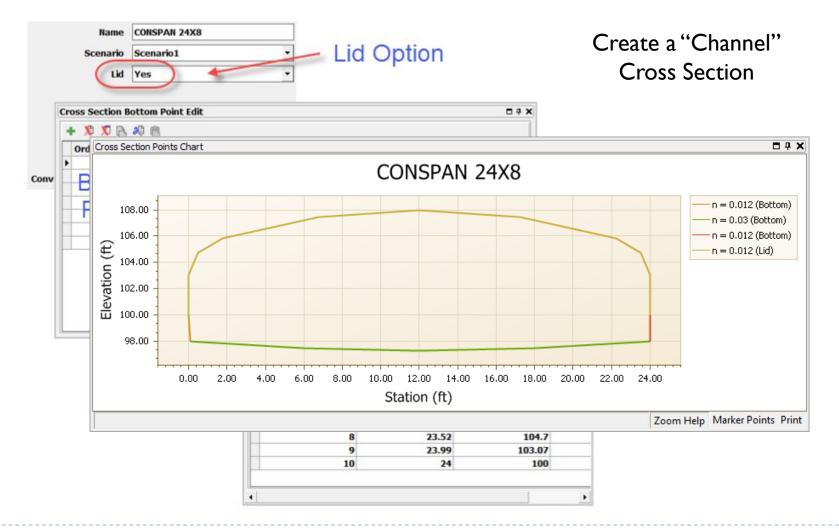
		Geometry Type	B/D	Input Requirements	CG/D
	Upstream	Circular	1.00	D	0.500
Truest 0	-	H-Elliptical	1.56	D	0.500
Invert 0	0	V-Elliptical	1.00/1.56	D	0.500
Manning's N 0	0	Arch (2-2/3" x 1/2")	1.607	D	0.446
	Geometry	Arch Structural Plate	variable	B, D	0.455
Type Rectangula	ar 🔻 Horiz	Rectangular	variable	B, D, F	0.500
Max Depth 0	0	V-notch Up	variable	B, D	o.677
Max Width 0		V-notch Down	variable	B, D	0.333
Fillet 0		Egg Shaped	2/3	D	0.529
		Horseshoe	1.00	D	0.475
		Gothic	0.84	D	0.492
\backslash		Catenary	0.90	D	0.453
These Fields [Depend on	Basket handle	0.944	D	0.467
Geometr	у Туре	Semi-Circular	1.64	D	0.456
		Semi-Elliptical	1.00	D	0.447
		Con Span	variable	Xsec Name	Variable
		B = maximum width, D =	= maximum depth, f	= fillet length, CG =	center of gravity



Normalized: Area, Hydraulic Radius & Wetted Perimeter

59

60



Source: CONTECH

CONSPAN BRIDGE

62

Name	CONSPAN		Upstream	Downstream
Scenario	Scenario1 🔹	Invert	97.25	97.25
From Node	МН			
To Node	POND		Geor	netry
Link Count	1	Туре	Con Span 🔻	Con Span 🔹
Flow Direction	Both 💌			
Damping Threshold	0			
Length	75			
FHWA Culvert Code	79	Cross Section	CONSPAN 24X8	CONSPAN 24X8
Entrance Loss Coefficient	0.25			
Exit Loss Coefficient	0			
Bend Loss Coefficient	0		Right click to selec	t from a list
Bend Location	0		of cross sec	tions
Energy Switch	Energy 🗸			

Channel Links


Geometric Considerations

		Upstream	Downstream
	Invert	0	0
	Manning's N	0	0
Drop Down		Geon	netry
Geometry	Types	Trapezoidal 🔹	Parabolic 🔹
	Max Depth	0	0
	Max Width		0
	Extrapolation Method	Normal Projection 🔹	Normal Projection 💌
	Bottom Width	0	
	Left Side Slope	0	
	Right Side Slope	0	

Channel Links

Geometric Considerations

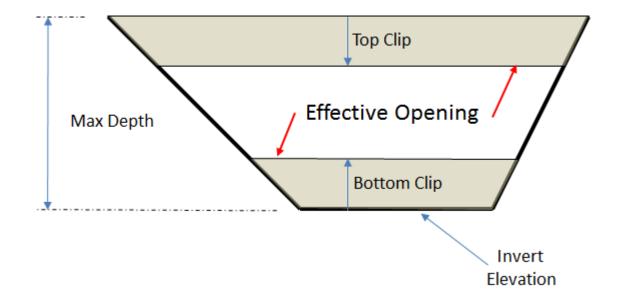
Trapezoidal

Wetted Perimeter Held Constant Above Max Depth

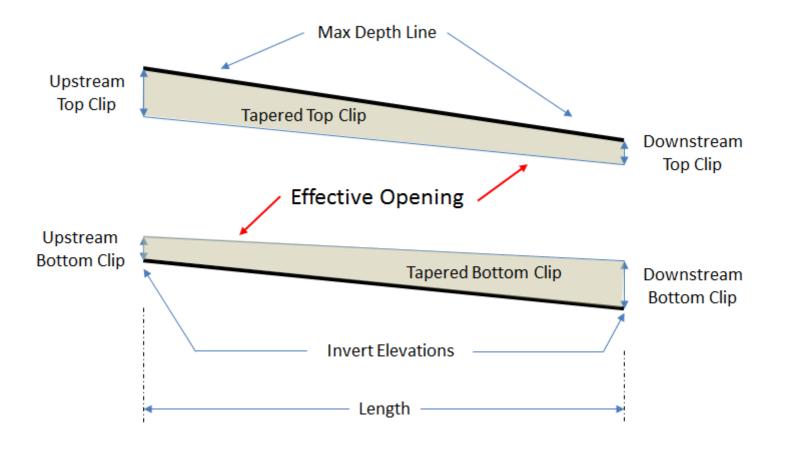
Channel Links Geometric Considerations

Vertical 14 Projection N 12 Max Width (50')Max Depth Normal Projection (10')-335 -30 -25 -20 -325 -10 -84 Π. 5. 10 15 20 25 30 33.

Wetted Perimeter Held Constant Above Max Depth


Lesson 2 - Hydraulics, Part I

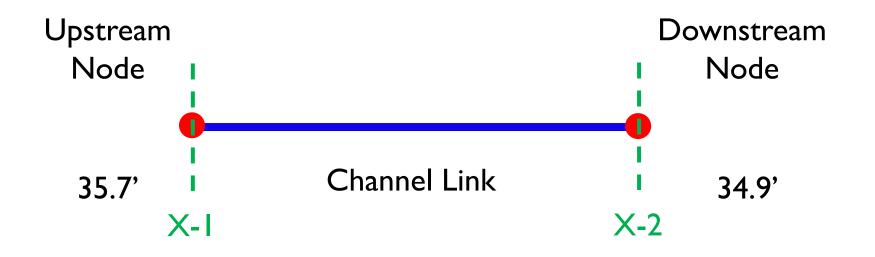
Parabolic


Pipe & Channel Links Bottom and Top Clips

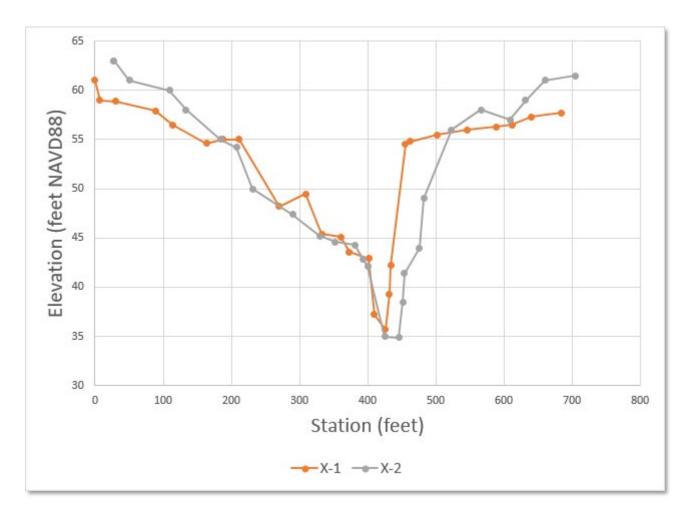
	Bottom Clip		
Default Value	0	0	
Operating Table			
Reference Node			
Manning's N	0	0	
	Тор	Clip	
Default Value	0	0	
Operating Table			
Reference Node			
Manning's N	0	0	

Pipe & Channel Links Bottom and Top Clips

Pipe & Channel Links Bottom and Top Clips

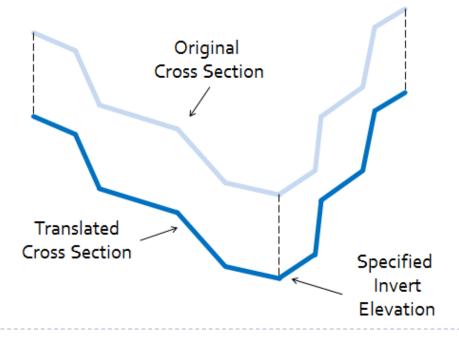


Channel Links Placement of Irregular Cross Sections Channel invert elevations are specified at each end of a channel link.



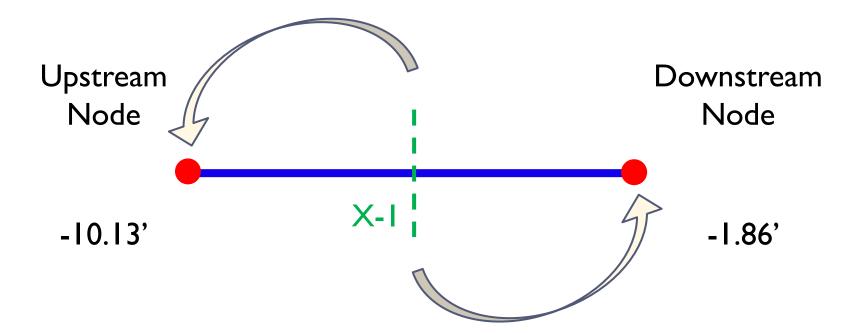
Channel Links

Placement of Irregular Cross Sections Typically, different cross sections are used at each end of the link for natural channels.

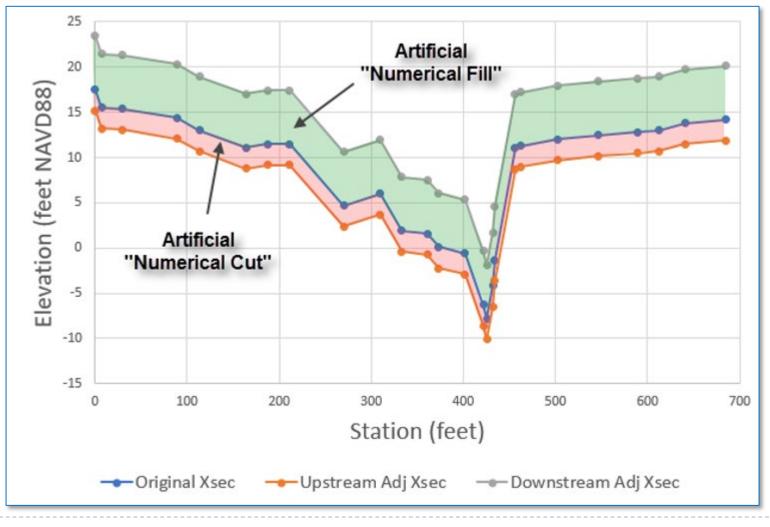

Channel Links Placement of Irregular Cross Sections

Channel Links

Placement of Irregular Cross Sections


If a channel invert elevation is different than the low elevation of the corresponding channel cross section, then every data point in the cross section is translated vertically by a distance equal to the difference in elevation between the invert and the low spot on the cross section, including overbank areas.

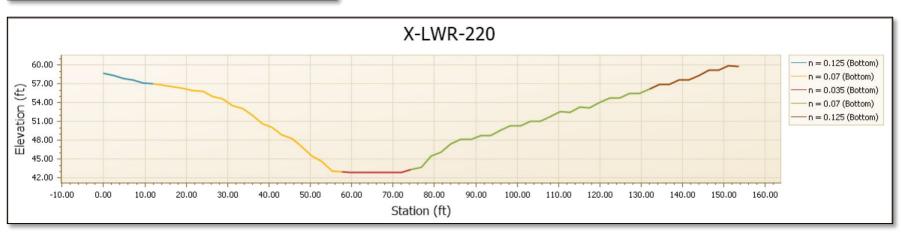
74


Channel Links

Placement of Irregular Cross Sections Be careful when applying the same cross section to both ends of a channel link!

75

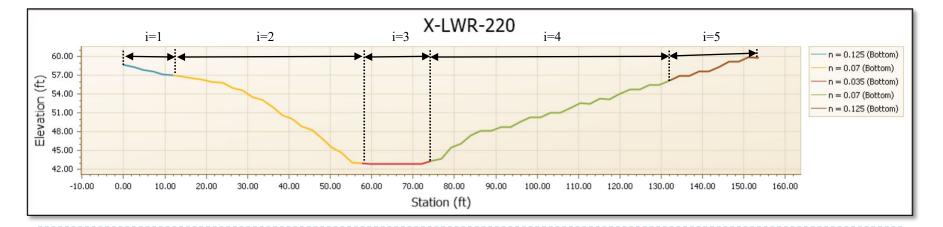
If the terrain in the overbank areas does not follow the slope along the channel bottom, artificial cuts and fills can occur and potentially produce erroneous results.



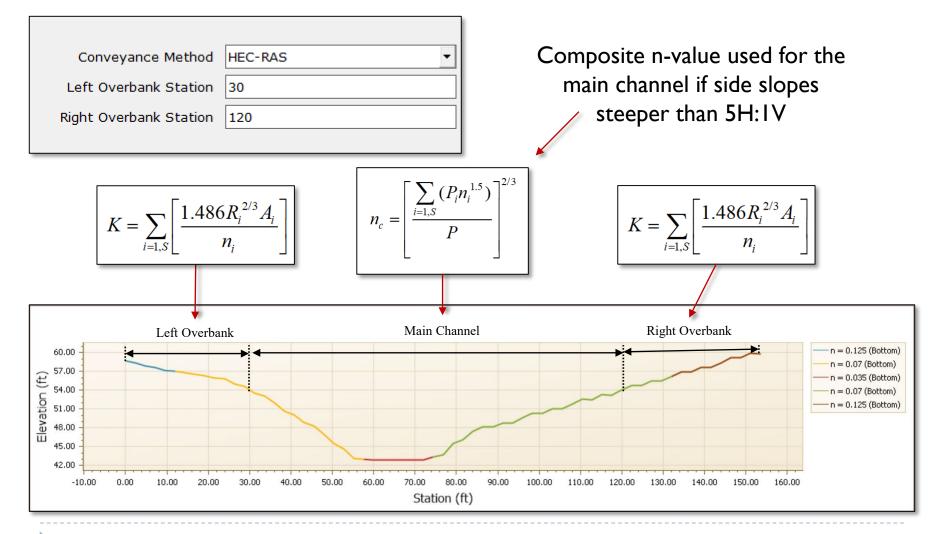
76

Channel Cross Sections

<u>H</u> ydrology	1D Hydraulics Reference Elements				
	<u>N</u> odes				
	All Link Types				
	Channel Links				
	Pipe Links				
	Weir Links				
	Drop Structure Links				
	Rating Curve Links				
	Bre <u>a</u> ch Links				
	French Drain Links				
	Percola <u>t</u> ion Links				
	Channel Cross Sections				
	Weir Cross Sections				
	Operating <u>T</u> ables				


+ 🎗 🎗 🖻 🤐 💼						
Order	9	Station	Elevation	Manning's N		
•	0	0	58.666241	0.125		
	1	2.398465	58.337521	0.125		
	2	4.79693	57.895653	0.125		
	3	7.195395	57.579197	0.125		
	4	9.593861	57.14188	0.125		
	5	11.992326	57.026146	0.125		
	6	14.390791	56.832737	0.07		
	7	16.789256	56.523327	0.07		
	8	19.187721	56.328396	0.07		
	9	21.586186	56.005196	0.07		
	10	23.984652	55.806759	0.07		
	11	26.383117	54.958363	0.07		
	12	28.781582	54.635201	0.07		

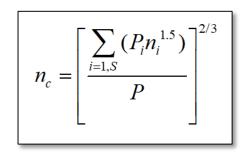
77

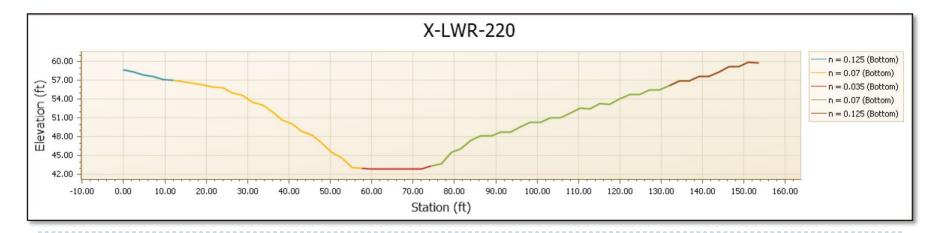

Channel Cross Sections Conveyance Method "ICPR v3"

Name Scenario Lid	X-LWR-220 Scenario1 No	subdivides the conveyance calculation based on roughness
Conveyance Method	ICPR v3	$K = \sum_{i=1,S} \left[\frac{1.486 R_i^{2/3} A_i}{n_i} \right]$

78

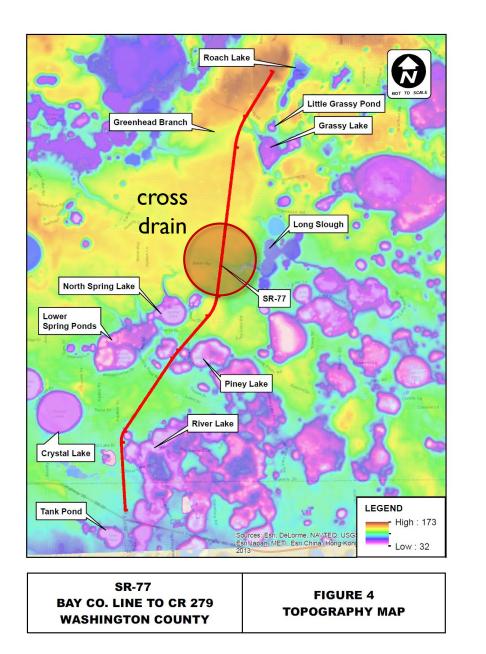
Channel Cross Sections Conveyance Method "HEC-RAS"

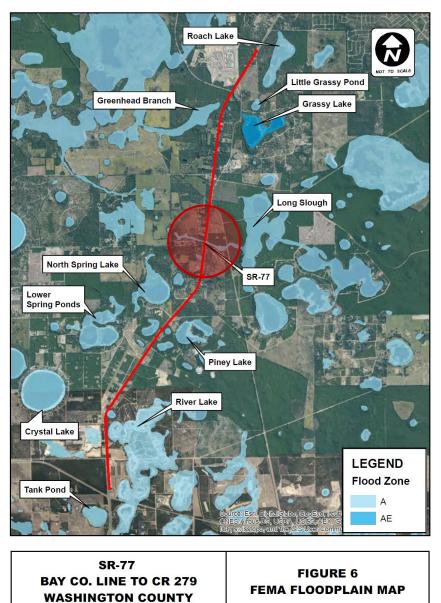



79

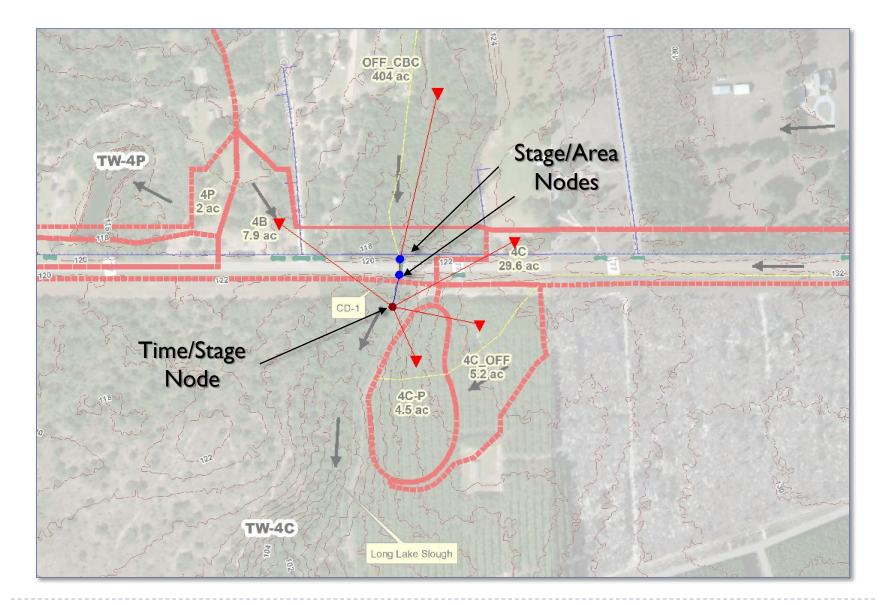
Channel Cross Sections Conveyance Method "Composite Manning's n"

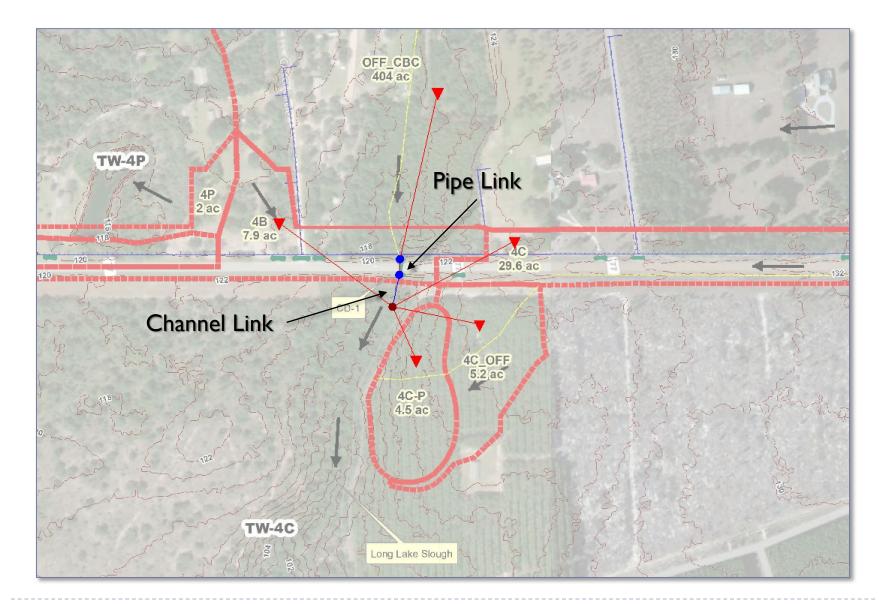
The composite Manning's n conveyance method calculates a composite n-value and conveyance at each unique elevation included in the data entered for the cross section by the user.

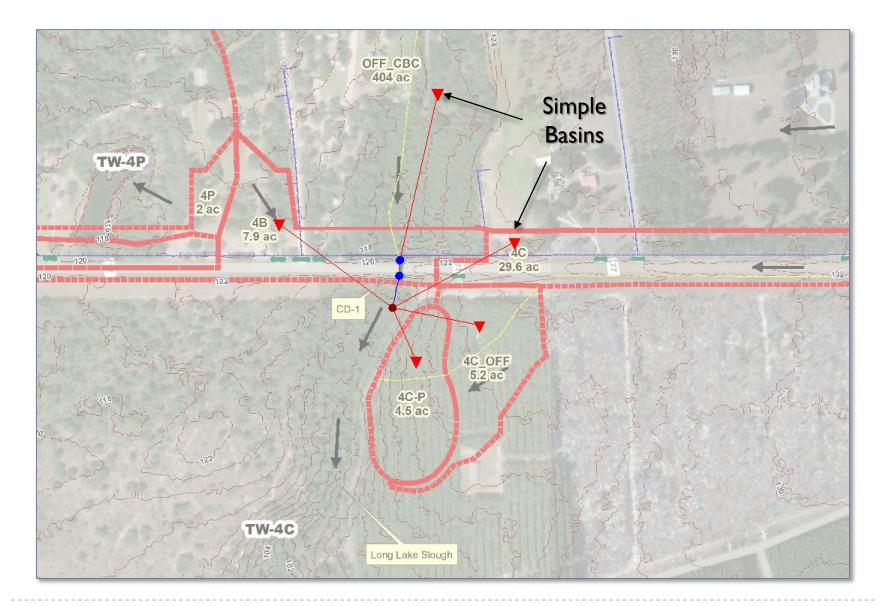



80

Example #1 Highway Cross Drain & Channel


Acknowledgement:


ATKINS Drainage Report SR 77, from Bay County Line to North of CR 279 Washington County, Florida

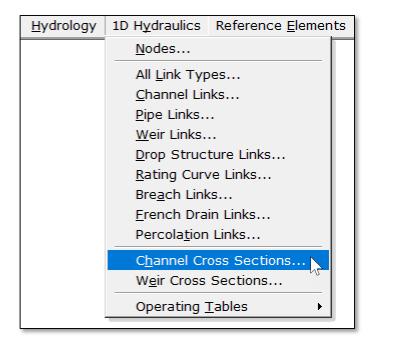


s, Inc. Lesson 2 - Hydraulics, Part I

Name	OFF_CBC	Simple Basin Data Form
Scenario	Cross Drain 💌	Simple Basin Data Form
Node	US CROSSDRAIN	Area 404
Hydrograph Method	NRCS Unit Hydrograph 🔹	Curve Number 43
Infiltration Method	Curve Number 💌	% Impervious 0
Time of Concentration	165	% DCIA 0
Max Allowable Q	999999	% Direct 0
Time Shift	0	Rainfall Name
Unit Hydrograph	Uh256	
Peaking Factor	256	

BASIN ID	LANDUSE TYPE	STATUS	Area (ac)	Impervious (ac)	Pervious (ac)	SOIL GROUP	CN	CN x A	CCN
OFF_CBC	Open-Space	ROW	0.29			А	39	11.43	
OFF_CBC	Roads-Dirt	ROW	0.02			А	72	1.38	
OFF_CBC	Woods	ROW	0.20			А	30	6.14	
OFF_CBC	Open-Space	ROW	1.99			A/D	80	158.91	
OFF_CBC	Impervious	ROW	0.14			A/D	98	13.47	
OFF_CBC	Woods	ROW	0.13			A/D	77	9.72	
		ROW Total	2.77	0.16	2.61				
OFF_CBC	Woods	OFFSITE	88.05	/		A	30	2641 51	
OFF_CBC	Woods-Tree Farm	OFFSITE	82.05	/		А	35	2871.90	
OFF_CBC	Woods-Grass	OFFSITE	9.82		~	А	45	442.01	
OFF_CBC	Roads-Dirt	OFFSITE	4.18		CN	А	72	301.09	
OFF_CBC	Open-Space	OFFSITE	154.46	14/		A	39	6023.94	
OFF_CBC	Impervious	OFFSITE	1.42	vvor	kshee	et A	98	139.24	
OFF_CBC	Fallow	OFFSITE	43.87			A	77	3377.98	
OFF_CBC	Roads-Dirt	OFFSITE	0.27			A/D	89	24.12	
OFF_CBC	Woods	OFFSITE	5.04			A/D	77	387.83	
OFF_CBC	Impervious	OFFSITE	0.37			A/D	98	36.26	
OFF_CBC	Open-Space	OFFSITE	11.86			A/D	80	949.05	
		OFFSITE Total	401.40	5.97	395.43				
OFF_CBC Total			404.17	6.13	398.04			17395.97	43.0

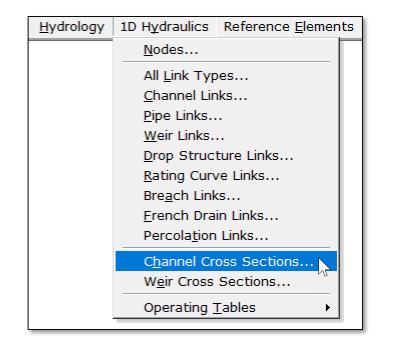
<u>H</u> ydrology	1D Hydraulics	Reference <u>E</u> lements	
	<u>N</u> odes		
	All Link Types		
	<u>C</u> hannel Links		
	Pipe Links		
	Weir Links		
	D 01	· · · · · · · · · · · · · · · · · · ·	


Pipe Data Form

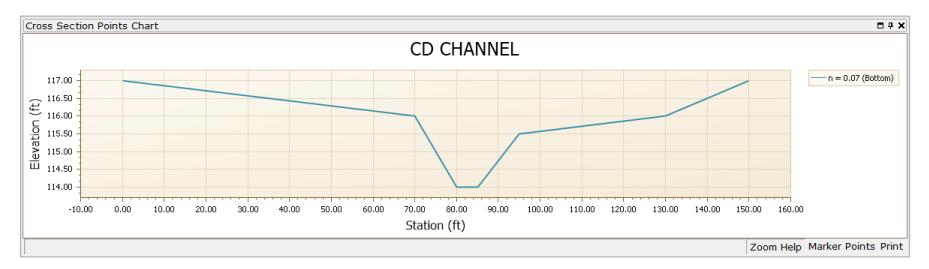
Name	CROSSDRAIN			Upstream	Downstream
Scenario	Cross Drain 💌		Invert	113.82	114.35
From Node	US CROSSDRAIN		Manning's N	0.012	0.012
To Node	DS CROSSDRAIN			Geon	netry
Link Count	1		Туре	Rectangular 🔹	Rectangular 🔻
Flow Direction	Both 💌		Max Depth	4	4
Damping Threshold	0		Max Width	5	5
Length	66		Fillet	0	0
FHWA Culvert Code	9	1			
Entrance Loss Coefficient	0.5				
Exit Loss Coefficient	0.5				
Bend Loss Coefficient	0				
Bend Location	0				
Energy Switch	Energy 🔻				

<u>H</u> ydrology	1D Hydraulics	Reference Elements		
	<u>N</u> odes			
	All <u>L</u> ink Types			
	<u>C</u> hannel Links			
	Pipe Links			
	<u>W</u> eir Links			
	<u> </u>			

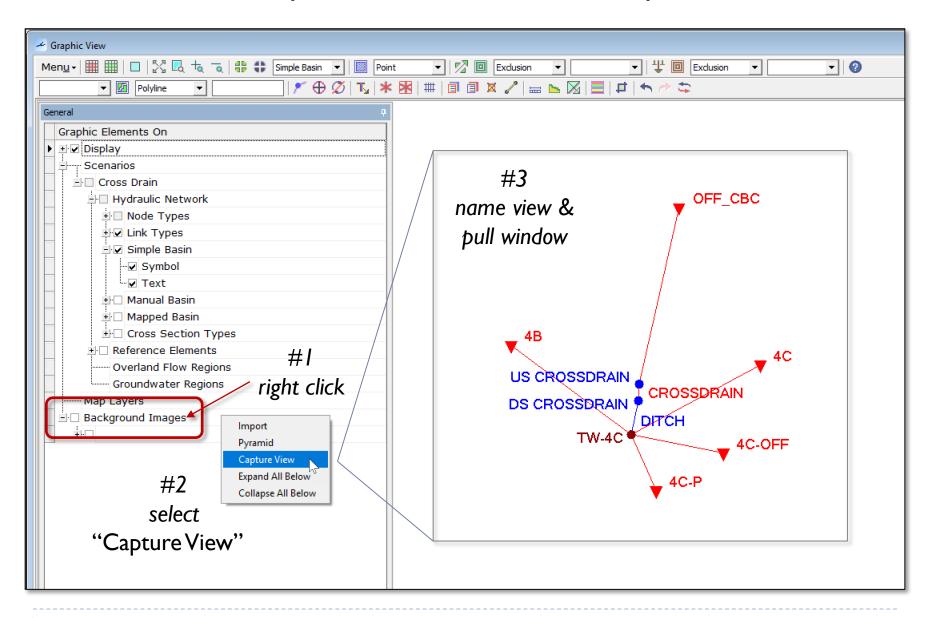
Channel Data Form


Name	DITCH		Upstream	Downstream
Scenario	Cross Drain	Invert	114.35	113.7
From Node	DS CROSSDRAIN			
To Node	TW-4C		Geor	netry
Link Count	1	Туре	Irregular 🔻	Irregular 🔻
Flow Direction	Both 💌			
Damping Threshold	0			
Length	170			
Contraction Coefficient	0.1			
Expansion Coefficient	0.3			
Entrance Loss Coefficient	0			
Exit Loss Coefficient	0	Main Cross Section	CD CHANNEL	CD CHANNEL
Bend Loss Coefficient	0			
Bend Location	0			
Energy Switch	Energy			

Channel Cross Section Data Form


Name	CD CHANNEL
Scenario	Cross Drain 💌
Lid	No
Conveyance Method	ICPR v3

Cro	Cross Section Bottom Point Edit						
•	+ 🗴 🖹 😫 💼						
	Order	Station	Elevation	Manning's N			
	0	0	117	0.07			
	1	70	116	0.07			
	2	80	114	0.07			
	3	85	114	0.07			
	4	95	115.5	0.07			
	5	130	116	0.07			
	6	150	117	0.07			
			·				



Channel Cross Section Data Form

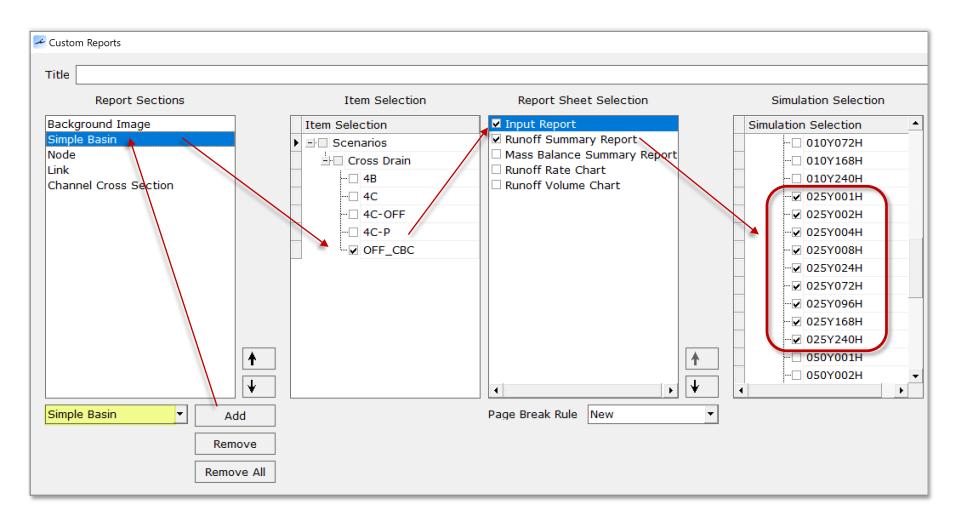
Name	CD CHANNEL
Scenario	Cross Drain 💌
Lid	No
Conveyance Method	ICPR v3

"Capture View" for Custom Report

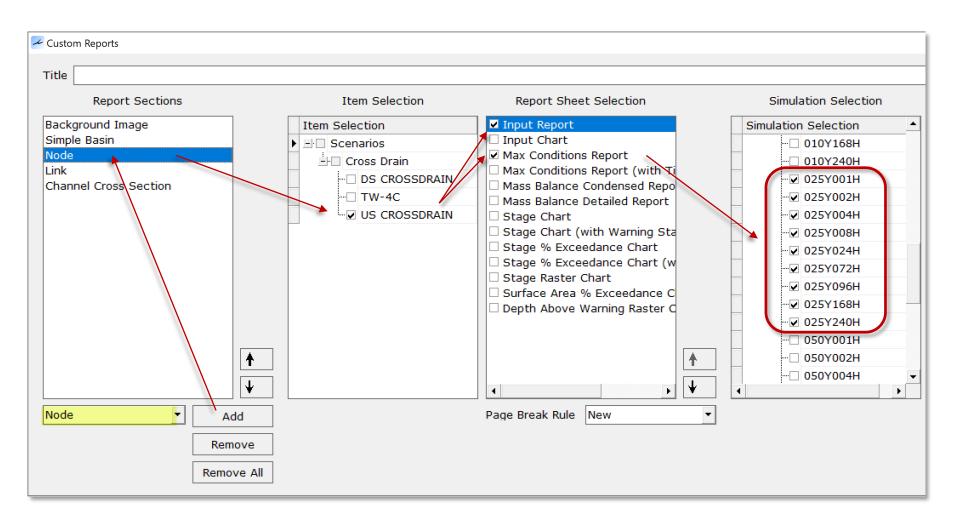
91

"Capture View" for Custom Report

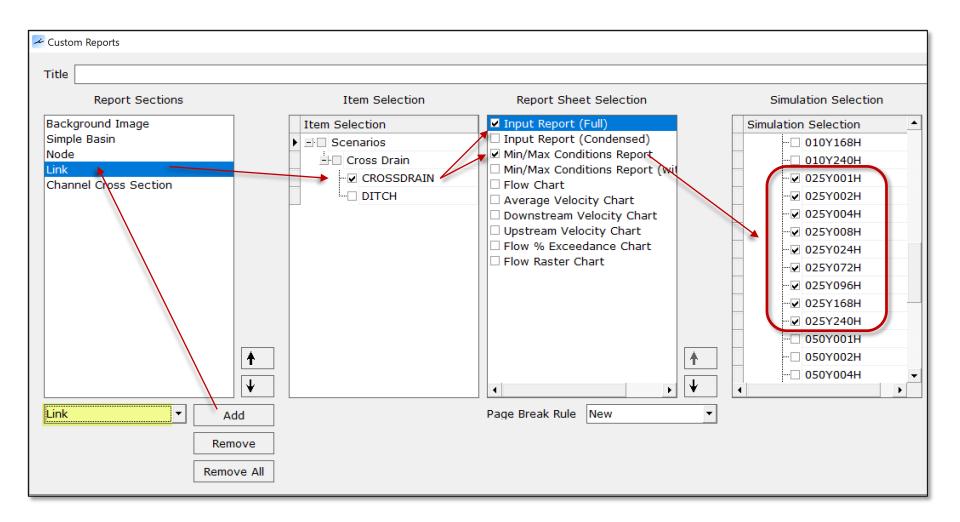
🗻 Graphic View
Menu • 🏢 🏢 🗆 🖓 🔩 to To 🛟 🛟 Simple Basin 🔹 🛄 Point 🔹 🖓 🔟 Exclusion 🔹 💽 🔱 🕼 Exclusion 🔹 💽 🔮
🔽 🔽 Polyline 🔽 📝 🖓 🌮 🎘 🗮 🗐 🖬 🖉 🥒 🔚 🗮 👘 🖓 🗮
Great 1 Image: Scenarios Image: Scenarios Image: Scenarios Image: ScenosSce


Preparing a Custom Report

<u>S</u> imulation	Rep <u>o</u> rts <u>W</u> indow He <u>l</u> p	
	Mass <u>B</u> alance <u>S</u> imple Basins <u>M</u> anual Basins Mapped Basins 1D <u>N</u> odes 1D <u>L</u> inks <u>C</u> rops	 <
	P <u>rintable</u> Lin <u>k</u> Path Manager Process Polygons	 <u>Input</u> <u>Simple Basin Max</u> <u>Manual Basin Max</u> Mapped Basin Max <u>N</u>ode Max <u>Link Max</u> <u>G</u>roundwater Mounding


Preparing a Custom Report Background Image

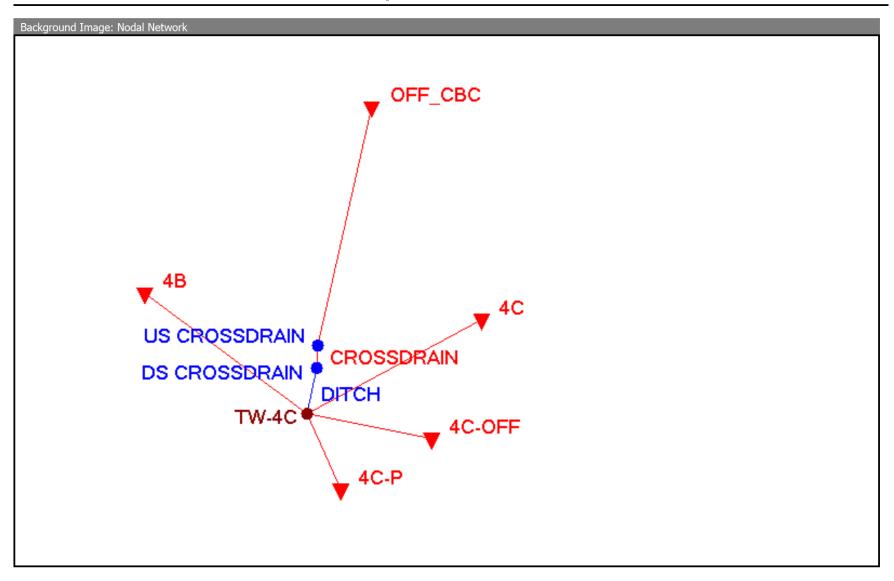
🛩 Custor	n Reports			
Title				
	Report Sections	Item Selection	Report Sheet Selection	Simulation Selection
Simple Node Link Chanr	pround Image e Basin hel Cross Section pround Image Add Remove Remove All	Item Selection Background Images Nodal Network p35 p36	✓ Image ✓ Page Break Rule	Simulation Selection ■ Scenarios ■ Cross Drain 002Y001H 002Y002H 002Y168H 005Y001H 005Y002H 005Y002H 005Y008H ✓


Preparing a Custom Report Simple Basin

Preparing a Custom Report Node

Preparing a Custom Report Link

Preparing a Custom Report Channel Cross Section


🛩 Custom Reports			
Title			
Report Sections	Item Selection	Report Sheet Selection	Simulation Selection
Background Image Simple Basin Node Link Channel Cross Section	Item Selection	✓ Input Report ✓ Input Chart ✓ Page Break Rule	Simulation Selection → Scenarios → Cross Drain → 002Y001H → 002Y002H → 002Y002H → 002Y002H → 002Y072H → 002Y168H → 005Y001H → 005Y002H → → → → → → → →

Load	Save	Print

Preparing a Custom Report Print Control

Print Properties					×
Destination	PDF	•	Paper Size	Letter	•
Folder	C:\Presentations\2019 - We		Orientation	Landscape	-
Name	Report.pdf		Margin Units	Inch	•
Page Font	Tahoma		Left Margin	1	* *
Header Font	Arial		Right Margin	1	▲ ▼
Footer Font	Arial		Top Margin	1	* *
Stripe Grids			Bottom Margin	1	▲ ▼
Rotate Charts					
Print Range					
⊙ All	O Pages From 1	To 1		O Selection	
	Left	Mide	dle	l	Right
Header	\$\$title\$\$ \$\$line\$\$		A	\$\$page\$\$	
		•	Ŧ		•
Footer		A			
	\$\$project\$\$	•	•	\$\$line\$\$ \$\$date\$\$ \$\$t	me\$\$
Launch PDF Viewer					ок

Custom Report (Background Image)

C:\Presentations\2019 - Webinars\Lesson 2\Example Models\SR77\ICPR4\

10/16/2019 10:49

Custom Report (Simple Basin)

Simple Basin: OFF_CBC

Input Data

Scenario:	Cross Drain
Node:	US CROSSDRAIN
Hydrograph Method:	NRCS Unit Hydrograph
Infiltration Method:	Curve Number
Time of Concentration:	165.0000 min
Max Allowable Q:	999999.00 cfs
Time Shift:	0.0000 hr
Unit Hydrograph:	Uh256
Peaking Factor:	256.0
Area:	404.0000 ac
Curve Number:	43.0
% Impervious:	0.00
% DCIA:	0.00
% Direct:	0.00
Rainfall Name:	

Comment:

Basin Runoff Summary

Simple Basin Ru	Simple Basin Runoff Summary [Cross Drain]										
Basin Name	Sim Name	Max Flow [cfs]	Time to Max	Total Rainfall	Total Runoff	Area [ac]	Equivalent	% Imperv	% DCIA		
			Flow [hrs]	[in]	[in]		Curve Number				
OFF_CBC	025Y001H	7.99	2.5667	3.80	0.06	404.0000	43.0	0.00	0.00		
OFF_CBC	025Y002H	24.90	3.2667	4.80	0.24	404.0000	43.0	0.00	0.00		
OFF_CBC	025Y004H	53.52	4.7500	6.00	0.55	404.0000	43.0	0.00	0.00		
OFF_CBC	025Y008H	70.94	6.8000	7.30	1.13	404.0000	43.0	0.00	0.00		
OFF_CBC	025Y024H	80.96	19.9667	10.00	2.62	404.0000	43.0	0.00	0.00		
OFF_CBC	025Y072H	95.87	61.3833	12.20	3.98	404.0000	43.0	0.00	0.00		
OFF_CBC	025Y096H	187.64	62.0000	13.00	4.54	404.0000	43.0	0.00	0.00		
OFF_CBC	025Y168H	103.28	160.5167	14.50	5.59	404.0000	43.0	0.00	0.00		
OFF_CBC	025Y240H	124.91	184.6000	16.00	6.70	404.0000	43.0	0.00	0.00		

C:\Presentations\2019 - Webinars\Lesson 2\Example Models\SR77\ICPR4\

Custom Report (Node)

Node: US CROSSDRAIN

	Scenario:	Cross Drain
	Type:	Stage/Area
Input Data	Base Flow:	0.00 cfs
Input Data	Initial Stage:	113.82 ft
	Warning Stage:	122.20 ft

Comment:

Node Max Conditions

Node Max Conditions [Cross Drain]								
Node Name	Sim Name	Warning Stage [ft]	Max Stage [ft]	Min/Max Delta	Max Total Inflow	Max Total Outflow	Max Surface Area	
				Stage [ft]	[cfs]	[cfs]	[ft2]	
US CROSSDRAIN	025Y001H	122.20	115.33	0.0010	7.99	8.06	330	
US CROSSDRAIN	025Y002H	122.20	116.10	0.0010	24.90	24.90	330	
US CROSSDRAIN	025Y004H	122.20	117.02	0.0010	53.52	53.55	330	
US CROSSDRAIN	025Y008H	122.20	117.48	0.0010	70.94	71.00	330	
US CROSSDRAIN	025Y024H	122.20	117.74	0.0010	80.96	81.01	330	
US CROSSDRAIN	025Y072H	122.20	118.16	0.0010	95.87	95.92	330	
US CROSSDRAIN	025Y096H	122.20	120.14	0.0010	187.63	187.65	330	
US CROSSDRAIN	025Y168H	122.20	118.36	0.0010	103.28	103.28	330	
US CROSSDRAIN	025Y240H	122.20	118.93	0.0010	124.91	124.96	330	

C:\Presentations\2019 - Webinars\Lesson 2\Example Models\SR77\ICPR4\

102 © 2019, Streamline Technologies, Inc.

Custom Report (Link)

Link: CROSSDRAIN	Upstrea	m	Downs	stream
Scenario: Cross Drain	Invert: 1	13.82 ft	Invert:	114.35 ft
From Node: US CROSSDRAIN	Manning's N: 0.	.0120	Manning's N:	0.0120
To Node: DS CROSSDRAIN	Geometry: Rec	tangular	Geometry:	Rectangular
Link Count: 1	Max Depth: 4.	.00 ft	Max Depth:	4.00 ft
Flow Direction: Both	Max Width: 5.	.00 ft	Max Width:	5.00 ft
Damping: 0.0000 ft	Fillet: 0.	.00 ft	Fillet:	0.00 ft
Length: 66.00 ft		Bot	tom Clip	
FHWA Code: 9	Default: 0.	.00 ft	Default:	0.00 ft
Entr Loss Coef: 0.50	Op Table:		Op Table:	
Exit Loss Coef: 0.50	Ref Node:		Ref Node:	
Bend Loss Coef: 0.00	Manning's N: 0.	.0120	Manning's N:	0.0120
Bend Location: 0.00 ft		Τα	op Clip	
Energy Switch: Energy	Default: 0.	.00 ft	Default:	0.00 ft
	Op Table:		Op Table:	
	Ref Node:		Ref Node:	
	Manning's N: 0.	0120	Manning's N:	0.0120

Input Data

C:\Presentations\2019 - Webinars\Lesson 2\Example Models\SR77\ICPR4\

Custom Report (Link)

Link Min/Max Conditions [Cross Drain]

Link Name	Sim Name	Max Flow [cfs]	Min Flow [cfs]	Min/Max Delta Flow	Max Us Velocity	Max Ds Velocity	Max Avg Velocity
				[cfs]	[fps]	[fps]	[fps]
CROSSDRAIN	025Y001H	8.06	0.00	-0.17	1.07	1.78	1.42
CROSSDRAIN	025Y002H	24.90	0.00	-0.11	2.19	3.32	2.75
CROSSDRAIN	025Y004H	53.55	0.00	0.09	3.34	5.05	4.20
CROSSDRAIN	025Y008H	71.00	0.00	-0.13	3.88	6.16	5.02
CROSSDRAIN	025Y024H	81.01	0.00	0.20	4.13	6.77	5.45
CROSSDRAIN	025Y072H	95.92	0.00	-0.98	4.80	7.65	6.23
CROSSDRAIN	025Y096H	187.65	0.00	0.98	9.38	10.65	10.02
CROSSDRAIN	025Y168H	103.28	0.00	-0.98	5.16	8.07	6.62
CROSSDRAIN	025Y240H	124.96	0.00	0.98	6.25	9.28	7.76

Link Min/Max Conditions

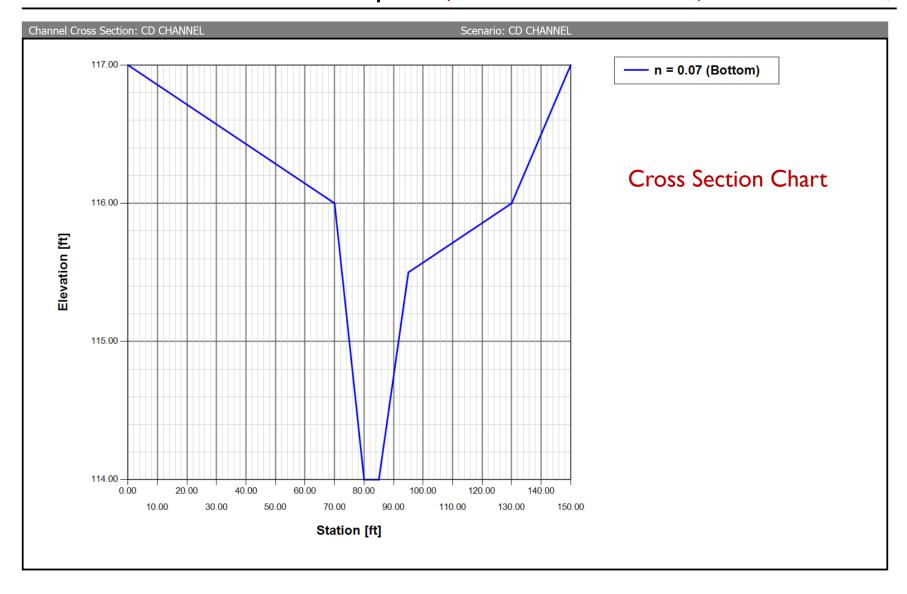
C:\Presentations\2019 - Webinars\Lesson 2\Example Models\SR77\ICPR4\

Channel Cross Section: CD CHANNEL

Scenario: Cross Drain Lid: No

Conveyance Method: ICPRv3

Bottom Point Table


Order	Station [ft]	Elevation [ft]	Manning's N
0	0.00	117.00	0.0700
1	70.00	116.00	0.0700
2	80.00	114.00	0.0700
3	85.00	114.00	0.0700
4	95.00	115.50	0.0700
5	130.00	116.00	0.0700
6	150.00	117.00	0.0700

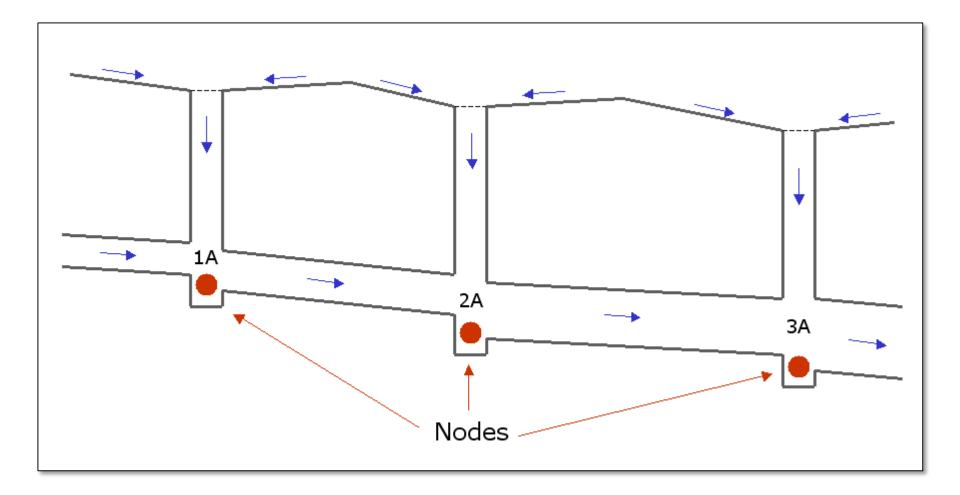
Comment:

Input Data

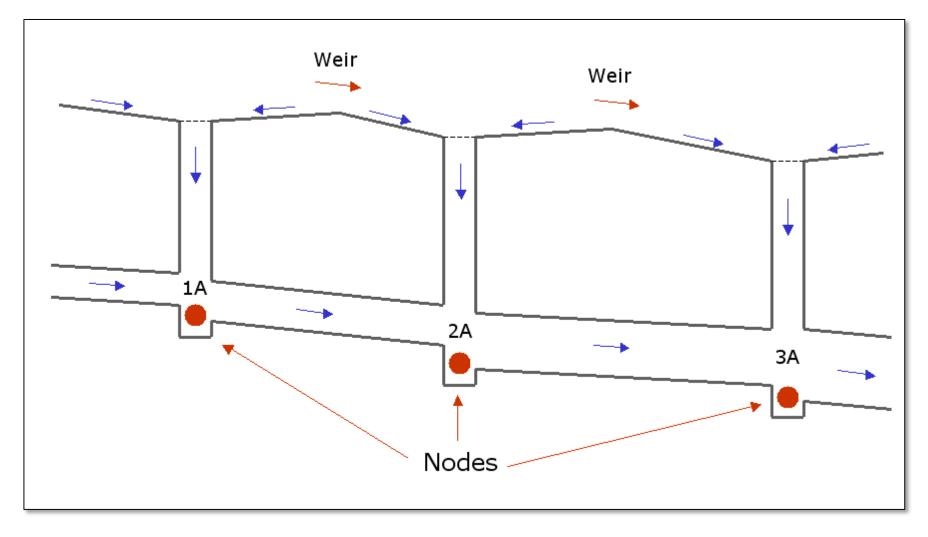
C:\Presentations\2019 - Webinars\Lesson 2\Example Models\SR77\ICPR4\

Custom Report (Channel Cross Section)

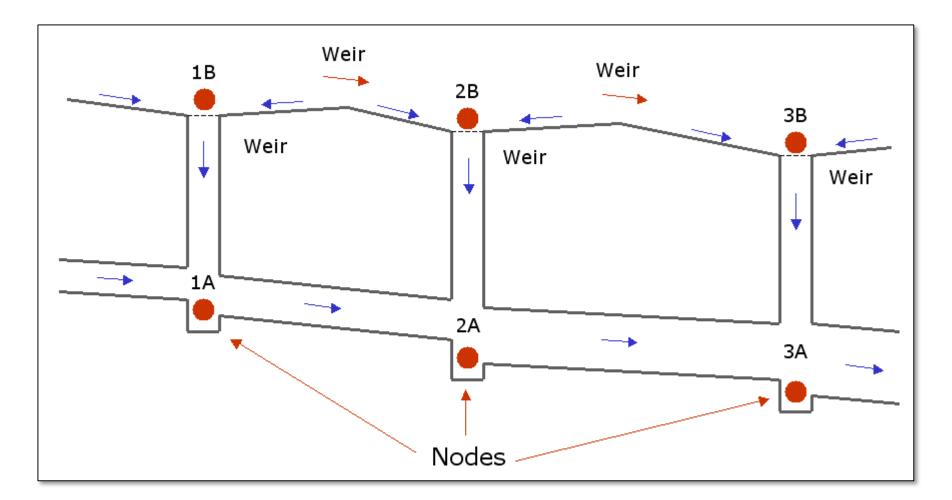
C:\Presentations\2019 - Webinars\Lesson 2\Example Models\SR77\ICPR4\


10/16/2019 10:49

Example #2


Integrated Storm Sewer Hydraulics and Pond Routing for a Commercial Site

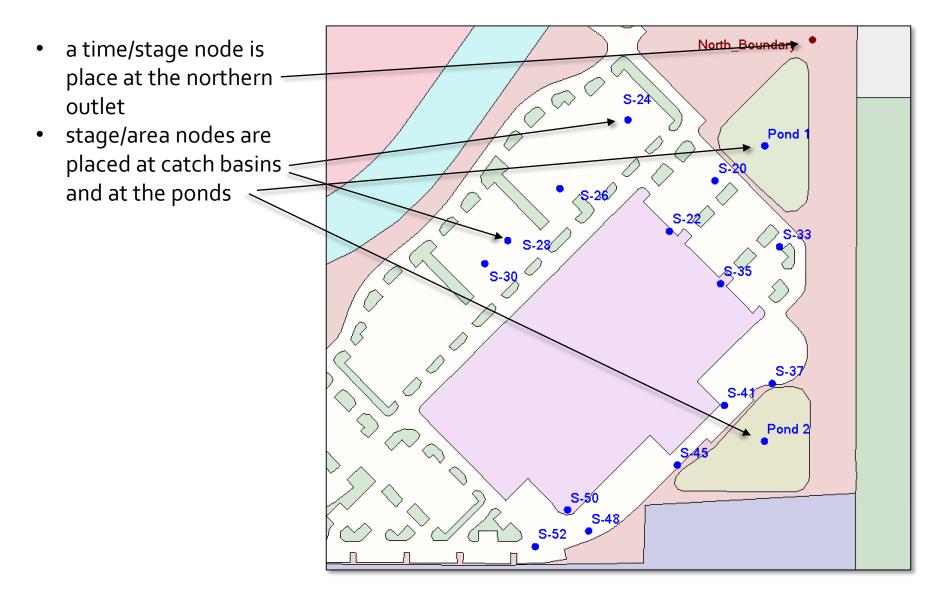
Nodal Network Strategies for Storm Sewers


Option I

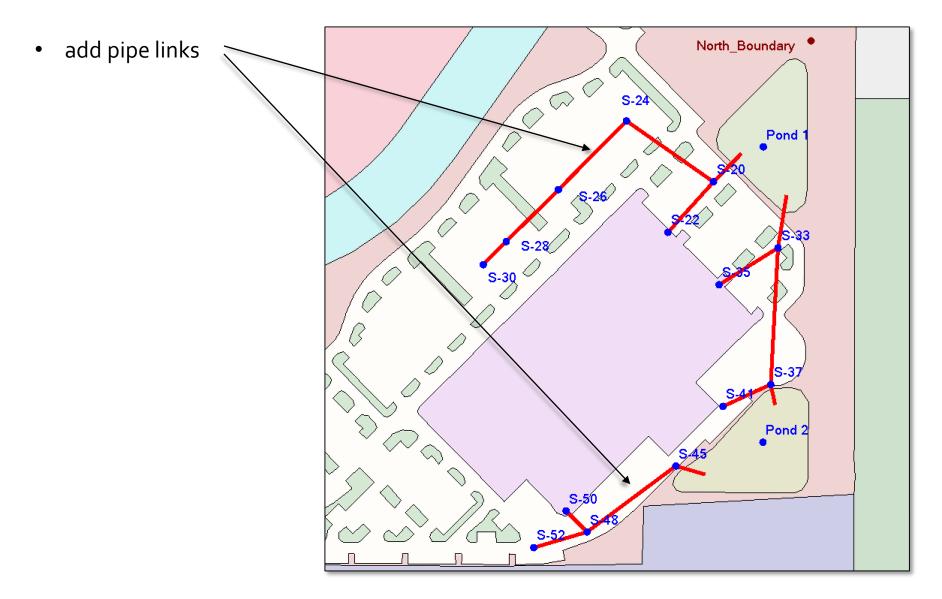
Nodal Network Strategies for Storm Sewers

Option 2

Nodal Network Strategies for Storm Sewers

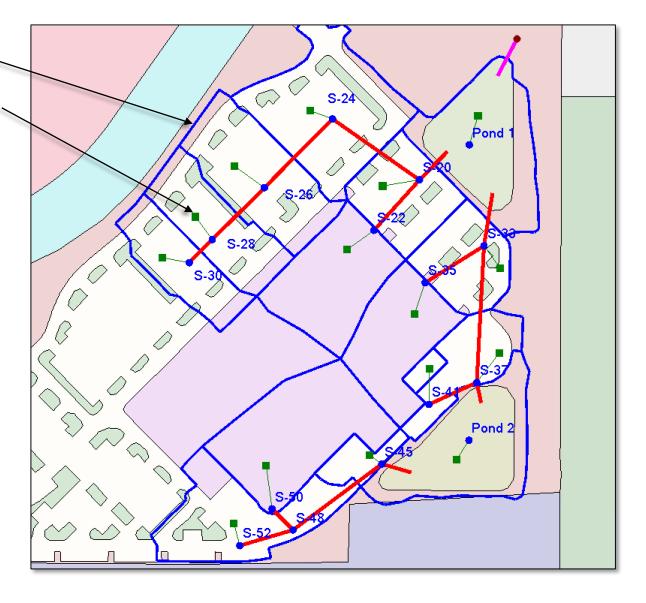

Option 3

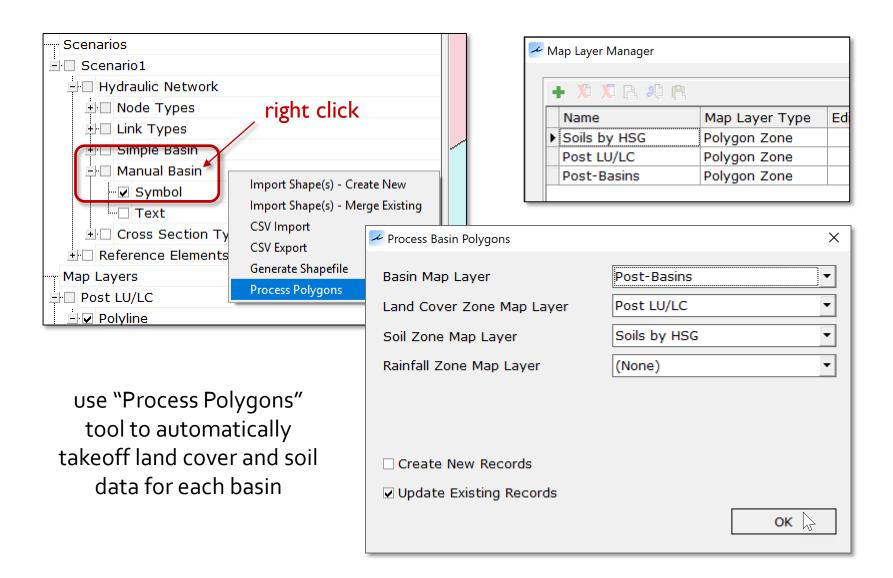
- This example includes a storm sewer system that drains part of a commercial site into 2 detention ponds
- A storm sewer is also used to connect the two ponds together
- "Option 1" from the previous slides is used for the nodal network strategy
- A control structure serves as the outfall for the system*
- The storm sewer hydraulics are integrated with the pond routing computations (dynamic tailwater condition)

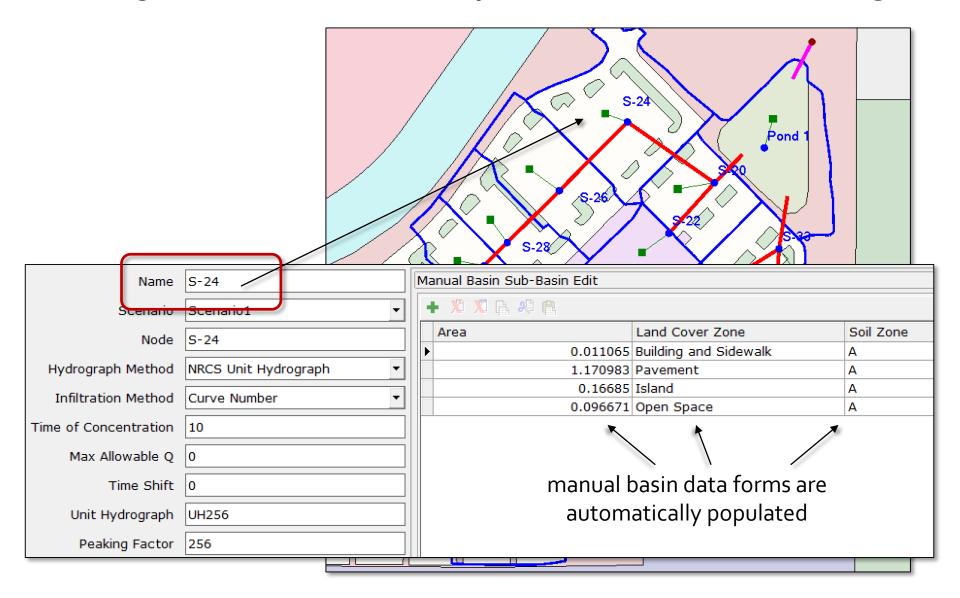

100 Pond 1 Pond

* We will discuss control structures in Lesson 3

111


1


North_Boundary add drop structure*link (control structure) 00 S-24 Pond <mark>-S-26</mark>⁄ * to be discussed in Lesson 3 <mark>S-28∕</mark> **S-30** Pond 2 -S-


•

- delineate "manual" • basins
- assign basins to nodes ٠

1

<u>M</u> apping	Ta <u>b</u> les	S <u>c</u> enarios	<u>H</u> ydrology	1D	Hydraulics	Reference <u>E</u> lements
	<u>E</u> xte	ndary Stage ernal Hydrog ghness Sets	raph Sets			
		fall Excess M ervious Sets		•		Ampt Sets Layers Sets
	CSV Import - All CSV Export - All				<u>C</u> urve N	lumber Sets

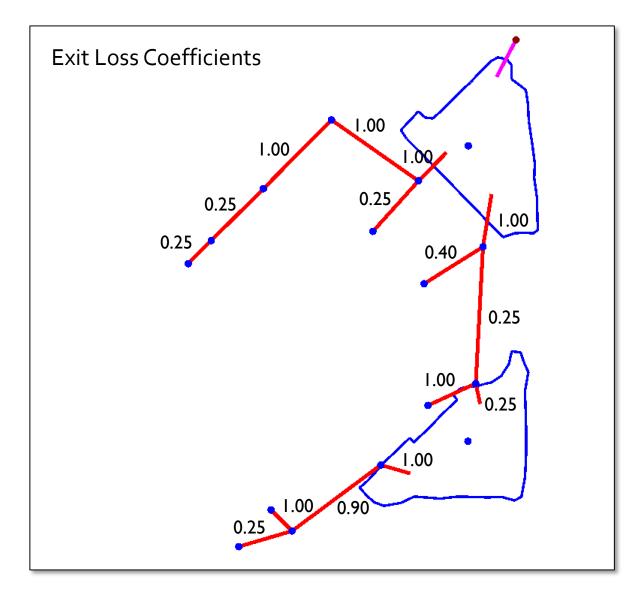
DCIA is not used in this example. The curve numbers include impervious areas.

🛩 Curve Number Set Data				×
Menu - 📰 📃 🏢 Az 천 🗞 🏋 🕜				
Curve Number Set List 📮 🗙	Name	No DCIA, AMC II		
Name No DCIA, AMC II	Comment	Use CNs directly fr	om TR-55	
				-
	Create	Clone	Delete	
	•			
Set Curve Number				
	1 Curve Num	ıber Set(s)		///

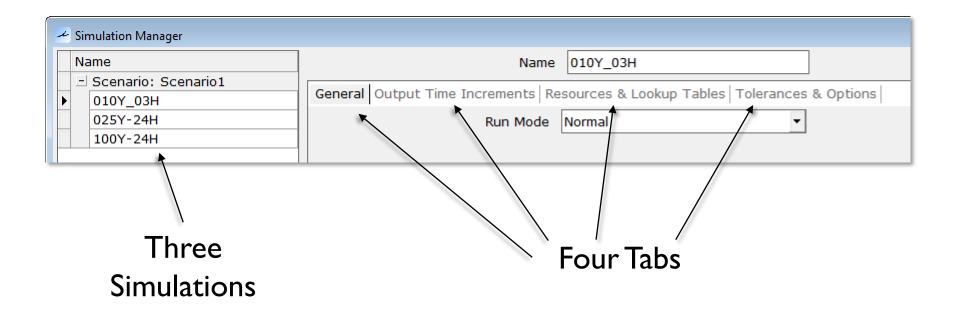
Mapping Tables Scenarios H Boundary Stage S External Hydrograp Roughness Sets Rainfall Excess Impervious Sets CSV Import - All CSV Export - All	thods <u>Uertical Layers S</u> <u>Curve Number Set</u>	exampl incluc	A is not used in this le. The curve numbers le impervious areas.
- Curve Number Set Data	✓ Curve Number Set Data Menu → Image: Set Data	0	
Men <u>u</u> •	 X X A A A A A Land Cover Zone Building and Sidewalk Building and Sidewalk Commercial Commercial HD Residential HD Residential Industrial Industrial Institutional Institutional 	Soil Zone A D A D A D A D A D A D D A D D	Curve Number • 98 98 98 98 98 98 99 99 99 95 99 95 99 95 91 92 92 93 93 93
Set Curve Number	Island Extract Set Curve Number	A	49 🔻
		1 Curve Numbe	r Set(s)

<u>M</u> apping	Ta <u>b</u> les	S <u>c</u> enarios	<u>H</u> ydrology	1D Hydraulics			
	_	ndary Stage Irnal Hydrog	Sets raph Sets				
	Roughness Sets Rainfall Excess Methods						
		ervious Sets					
	CSV	I <u>m</u> port - Al	<u>к</u>				
	CSV	Export - All					

"% Impervious" is set to zero for all land covers because impervious areas are incorporated into the curve numbers


🛩 Impervious Set Data Men <u>u</u> 🗸 📴 📰 🔛 🗛 🗞	%	0						
Impervious Set List		Impervious Set Data						×
No DCIA	м	en <u>u</u> - 📑 📄 🏢 Az	₦ 🗞 🎇 🕜					
		+ 🗴 🗴 🗛 🔒	<u>B</u>					_
		Land Cover Zone	% Impervious	% DCIA	% Direct	Ia Impervious	Ia Pervious	-
		Building and Side…	0	C	0	0	0	
		Commercial	0	C	0	0	0	
		HD Residential	0	C	0	0	0	
		Industrial	0	C	0	0	0	
		Institutional	0	C	0	0	0	
Set Impervious		Island	0	C	0	0	0	
		LD Residential	0	C	0	0	0	-
			1		1	1		Þ
	S	et Impervious						
				1	Impervious Set	(s)		

					<u>E</u> lements	<u>S</u> imulation	Rep <u>o</u> rts	<u>W</u> indow	He <u>l</u> p
							on Manag on <u>E</u> xecut		
Simulation Manager						<u>C</u> opy Re	source Fi	les	
Name		Name 010Y	_03H						
Scenario: Scen	General Output Time Incr	ements Resource	es & Lookup Tabl	es Tolerances & O	ptions				
025Y-24H			Resources				Loc	okup Tables	
100Y-24H	Rainf	all Folder		7	Bo	oundary Stage S	et		
				_	Ex	ternal Hydrogra	ph		
	Unit Hydrogra	ph Folder				Curve Number S	et No DCI	A, AMC II	
	, 3				1	Green-Ampt S		•	
						/ertical Layers S			
						 Impervious S 		Δ	
	The lool	<up table:<="" th=""><th>s are spe</th><th>cified in \angle</th><th></th><th>inpervious a</th><th></th><th><u> </u></th><th></th></up>	s are spe	cified in \angle		inpervious a		<u> </u>	
	the	simulatio	on manad	aer					
				5 -					
						,			
Create Clon	ne Print	Status	Errors	Warnings	Log	Delete	CSV In	nport <mark>ul C</mark> s	SV E>
Help								Toggle Flo	oat
•					_				
		410139be-7b54-4f8	7-bbcc-78654fcd7dab	: 4	3 Simulatio	ns			///


<u>H</u> ydrology	1D Hydraulics	Reference Elements				
	Nodes					
	All Link Types					
	Channel Links					
	<u>P</u> ipe Links.					
	<u>W</u> eir Links.	Weir Links				
	Drop Structure Links					
	Rating Cup	/e Links				

- Pipe Data -Using the "grid" tab, columns can be moved and sorted for QC/QA purposes

🛩 Link Pipe Data									
Menu - 📴 🧱 들 Az 🗞 🛞 🏋 🕜									
+ X X	r 🕫 🖻	9							
Name	△ From N	To Node	Upstream Invert	Downstream Invert	Length	FHWA Culvert Code	Entrance Loss Coefficient	Exit Loss Coefficient	
S-19	S-20	Pond 1	76.25	76	68	1	0.5	1	
S-21	S-22	S-20	79	77.8	128	1	0.5	0.25	
S-23	S-24	S-20	76.65	76.25	205	1	0.5	1	
S-25	S-26	S-24	77.15	76.65	189	1	0.5	1	
S-27	S-28	S-26	77.75	77.15	142	1	0.5	0.25	
S-29	S-30	S-28	78.25	77.75	61	1	0.5	0.25	
S-32	S-33	Pond 1	76.1	76	91	1	0.5	1	
S-34	S-35	S-33	79	77.8	130	1	0.5	0.4	
S-36	S-37	S-33	76	76.1	268	1	0.5	0.25	
S-38	Pond 2	S-37	76	76	27	5	0.7	0.25	
S-40	S-41	S-37	78.35	77.95	100	1	0.5	1	
S-44	S-45	Pond 2	76.15	76	50	1	0.5	1	
S-47	S-48	S-45	77	76.35	215	1	0.5	0.9	
S-49	S-50	S-48	79	78.6	54	1	0.5	1	
▶ S-51	S-52	S-48	77.5	77	105	1	0.5	0.25	
			· · ·						
Main Grid									
[ft] Enter	Bend Locatio	n'					15 Pipe Link((s)	
_								-	

<u>E</u> lements	<u>S</u> imulation	Rep <u>o</u> rts	<u>W</u> indow	He <u>l</u> p			
	<u>S</u> imulati						
	Simulati	Simulation <u>E</u> xecution ^v					
	<u>C</u> opy Re						

<u>E</u> lements	<u>S</u> imulation	Rep <u>o</u> rts	<u>W</u> indow	He <u>l</u> p			
	<u>S</u> imulati	ion Manag	er				
	Simulati	Simulation <u>E</u> xecution					
	<u>C</u> opy Re						

General Cutput Time Increments Re	esources & Lookup Tables Tolerances	& Options		
Run Mode	Normal			
	Year	Month	Day	Hour
Start Time	0	0	0	0
End Time	0	0	0	6
	Hydrology	Surface Hydraulics		
Minimum Calculation Time	30	0.1		
Maximum Calculation Time		30]	
Comment				<u> </u>
				•

The "General" Tab

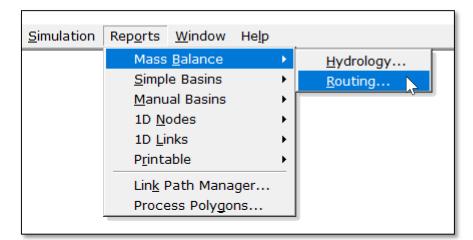
<u>E</u> lements	<u>S</u> imulation	Rep <u>o</u> rts	<u>W</u> indow	He <u>l</u> p		
	<u>S</u> imulati	on Manag	er 🔪			
	Simulati	Simulation <u>E</u> xecution				
	<u>C</u> opy Re					

General Out	put Time Increment	s Resources & Lo	okup Tables Tole	rances & Options						
Hydrology					Surface Hyd	raulics				
+ X X [4 A A				+ X X I	s 🧶 🖪				
Year	Month	Day	Hour	Time Increment	Year	Month	Day	Hour	Time Incre	ment
Þ	0	0	0	0 5		0	0	0	0	5
									Save Re	start

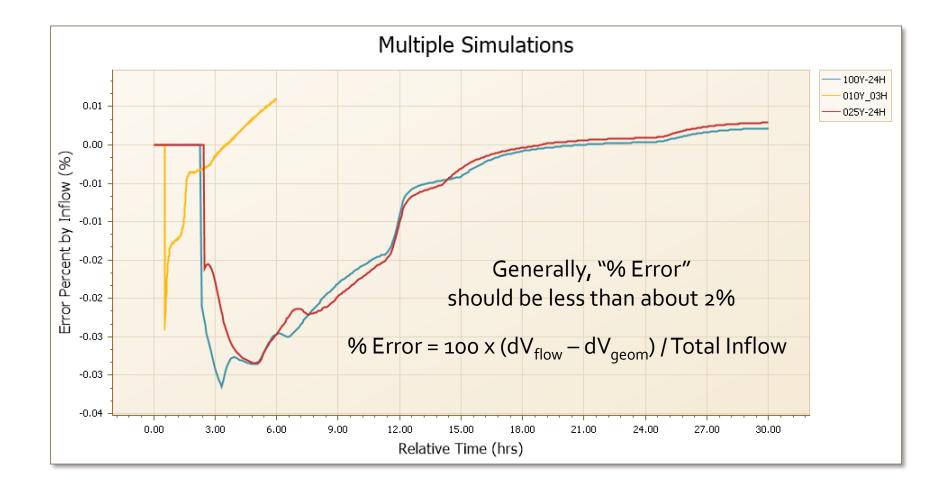
The "Output Time Increments" Tab

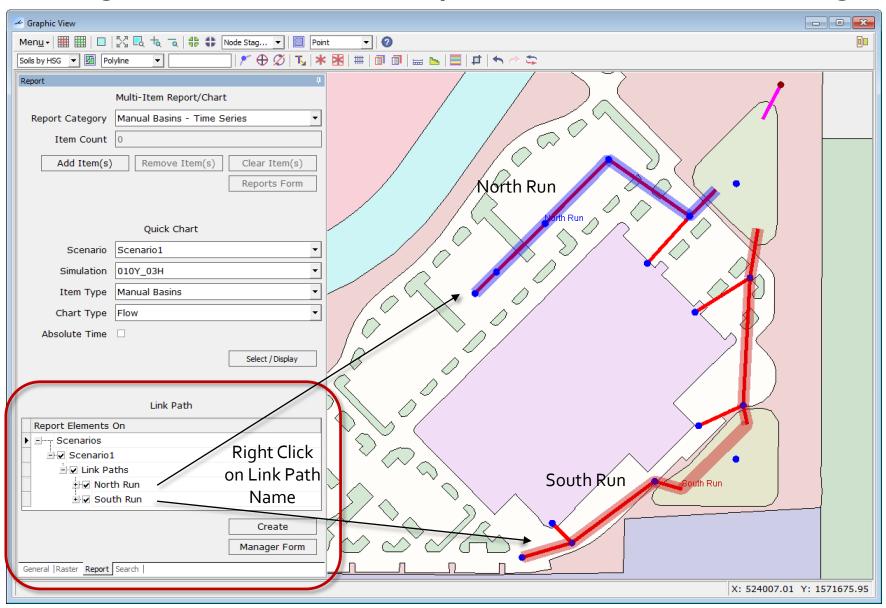
<u>E</u> lements	<u>S</u> imulation	Rep <u>o</u> rts	<u>W</u> indow	He <u>l</u> p
	<u>S</u> imulati			
	Simulati			
	<u>C</u> opy Re			

General Output Time Increments Resources & Lookup Tables Tolerances & Options		
Resources		Lookup Tables
Rainfall Folder	Boundary Stage Set	
	External Hydrograph Set	
Unit Hydrograph Folder	Curve Number Set	No DCIA, AMC II
	Green-Ampt Set	
	Vertical Layers Set	
	Impervious Set	No DCIA


The "Resources & Lookup Tables" Tab

	<u>E</u> lements	Simulation	Rep <u>o</u> rts	<u>W</u> indow	He <u>l</u> p							
		<u>S</u> imula	tion Manag	er								
		Simula	tion <u>E</u> xecut	tion 🔨								
		<u>C</u> opy F	Resource Fi	les								
				_								
Genera	al Output Time	Increments Re	esources & Look	kup Tables To	lerances 8	k Options		 				
		ime Marching		- L	-	· ·)	Intial	Abstraction F	Recovery Time	24	
	Maxim	um Iterations	6									
Ove	-Relaxation Wei	ghting Factor	0.5									
		dZ Tolerance	0.001					Simple	/ Manual Basi	n Rainfall Opt.	Global	•
		Maximum dZ	1									
	Link Optimi:	zer Tolerance	0.0001							Rainfall Name	~FLMOD	
									R	ainfall Amount	8.4	
									S	torm Duration	24	
								Defa	ult Damping T	Threshold (1D)	0.005	
								Minim	um Node Surf	ace Area (1D)	12.5	
									Energ	y Switch (1D)	Energy	-

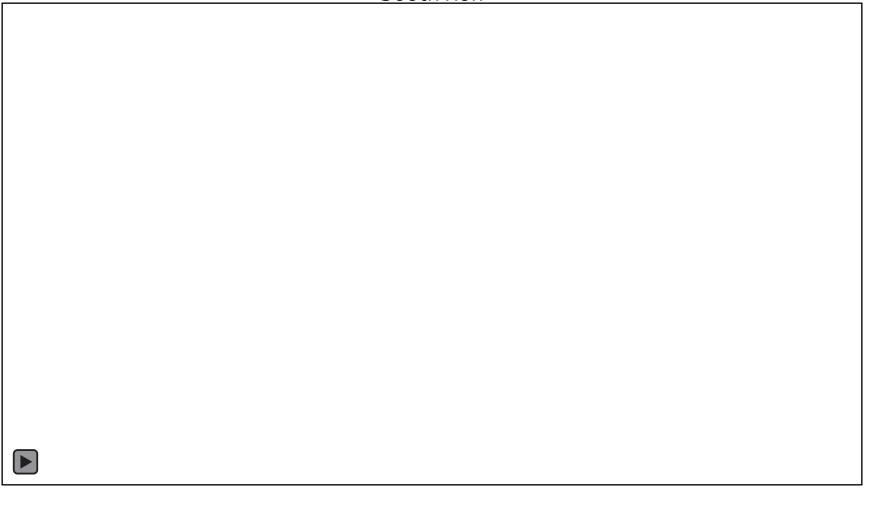

The "Tolerances & Options" Tab


Elements Simulation Reports Window I	Help		
Simulation Manager	Simulation Execution		×
<u>Copy Resource Files</u>	Simulation Selection	Scenarios Scenario1 □ 010Y_03H □ 025Y-24H □ 00Y-24H	
	Thread Count	Autodetect	•
	Help	ОК	<u> </u>

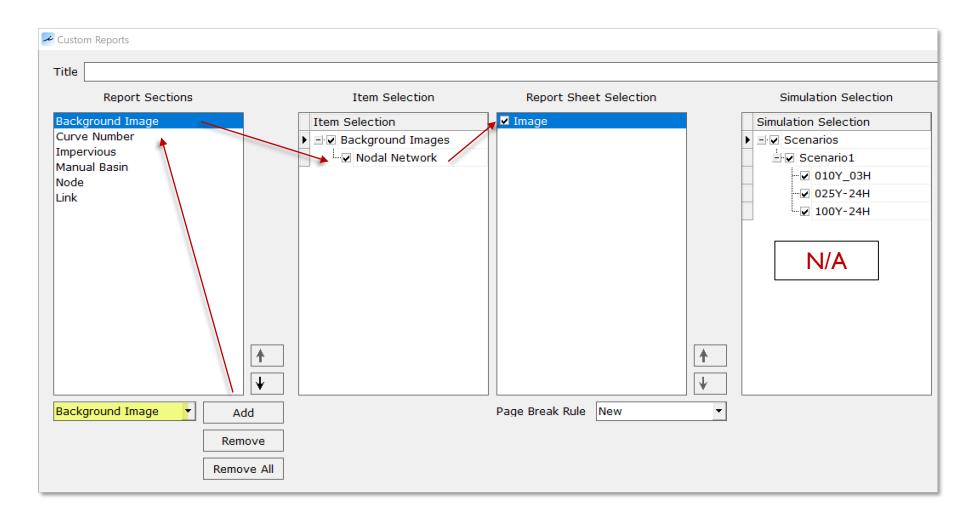
129

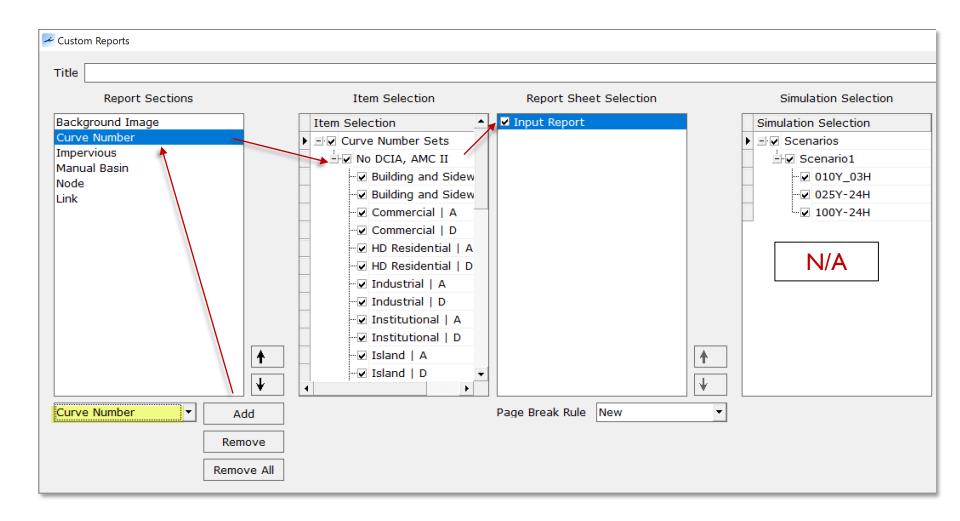
🛩 Reports : Mass B	alance - Routing			– 🗆 X
	Year	Month	Day	Hour
Start Time	0	0	0	0
End Time	0	0	0	0
Report Char Type X Parameter	t Superimpose sims Absolute Time * % Error (By Inflow)	Y Parameter Selection Base Inflow Volume Basin Inflow Volume External Inflow Volume Link Inflow Volume Stored Volume (Geometry Ba Stored Volume (Flow Based) Total Inflow Volume Total Outflow Volume Sase Outflow Volume Basin Outflow Volume External Outflow Volume	Simulation Selection	

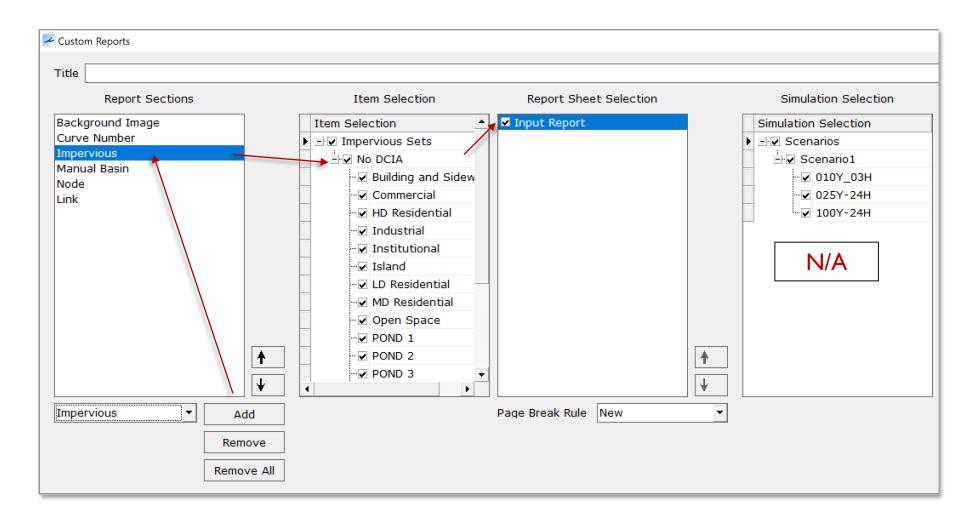
132

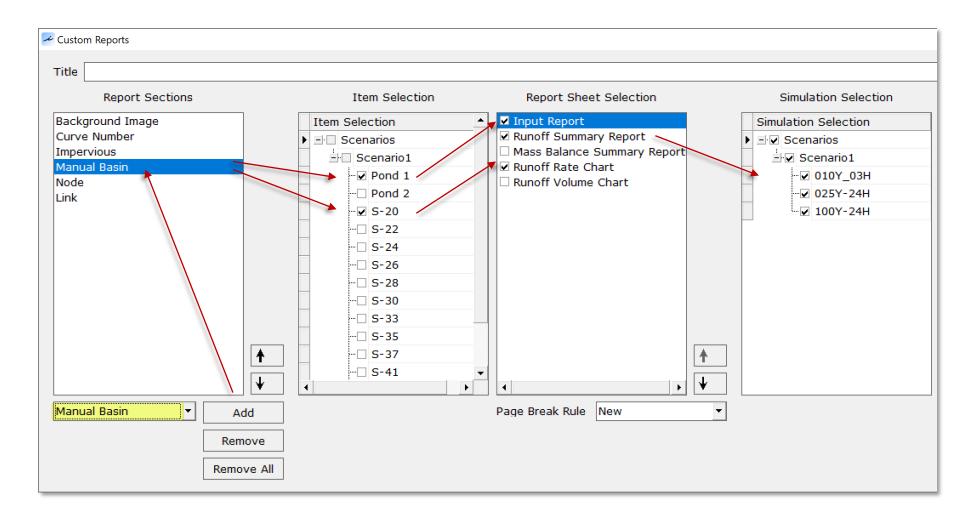


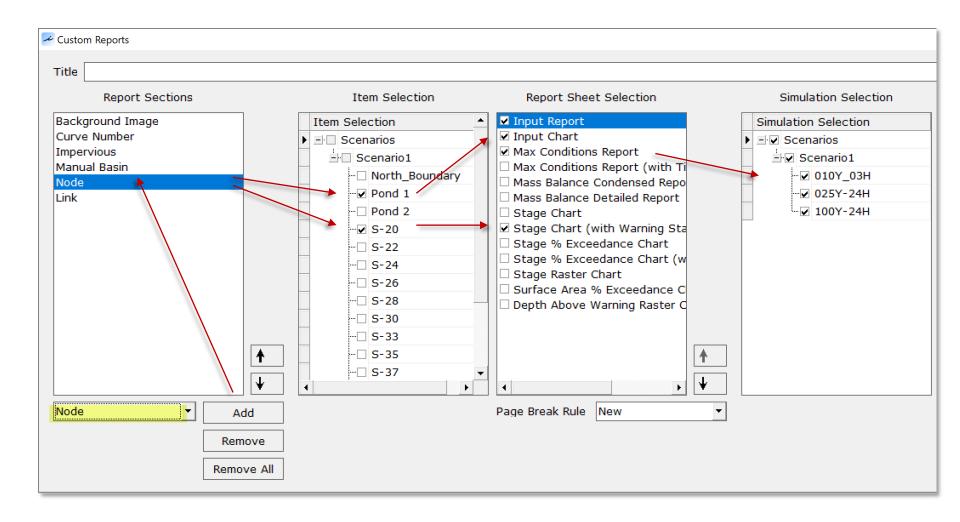
North Run

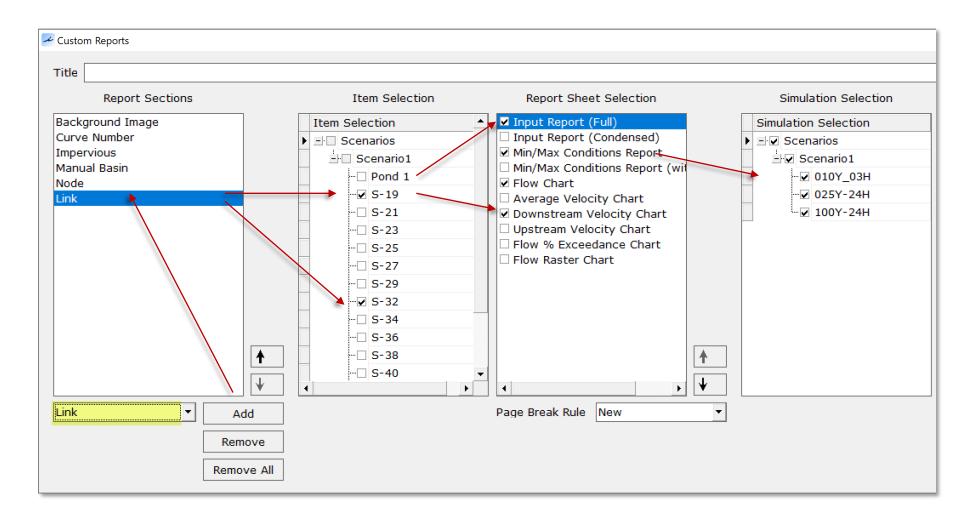

10 voor o br Ctorm

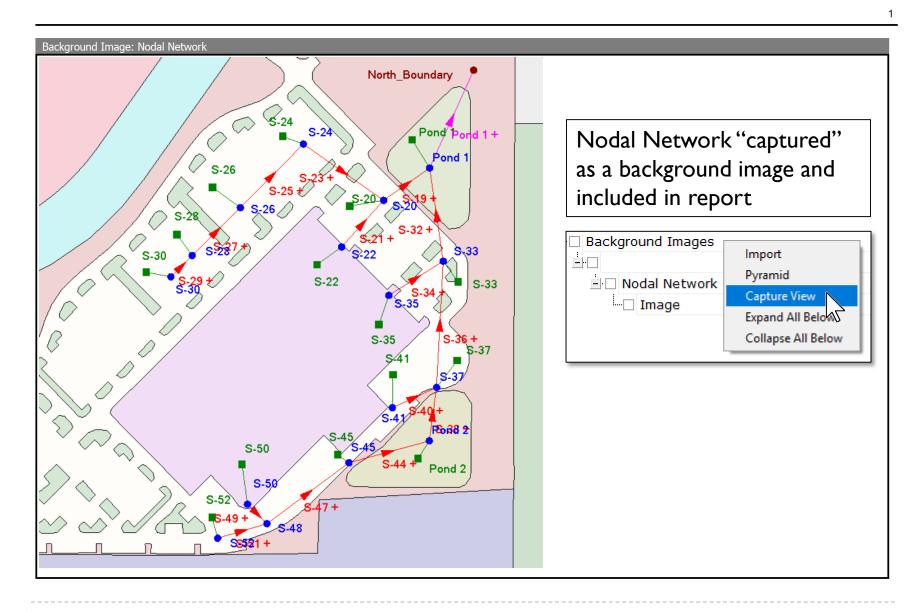



South Run




<u>S</u> imulation	Rep <u>o</u> rts	<u>W</u> indow	He <u>l</u> p		
	<u>S</u> impl <u>M</u> anu	nks		* * * * * *	
		able Path Mana ess Poly <u>g</u> o	-		Input Simple Basin Max Manual Basin Max Mapped Basin Max Node Max Link Max Groundwater Mounding Custom





Custom Report (Background Image)

142

Custom Report (Curve Number Lookup Table)

Curve Number: No DCIA, AMC II [Set]

Land Cover Zone	Soil Zone	Curve Number [dec]
Building and Sidewalk		98.0
Building and Sidewalk	A D	98.0
		89.0
Commercial	A	
Commercial	D	95.0
HD Residential	A	77.0
HD Residential	D	92.0
Industrial	A	81.0
Industrial	D	93.0
Institutional	A	81.0
Institutional	D	93.0
Island	A	49.0
Island	D	84.0
LD Residential	А	57.0
LD Residential	D	86.0
MD Residential	А	61.0
MD Residential	D	87.0
Open Space	A	49.0
Open Space	D	49.0
POND 1	А	49.0
POND 1	D	84.0
POND 2	A	49.0
POND 2	D	84.0
POND 3	А	49.0
POND 3	D	84.0
Pavement	А	98.0
Pavement	D	98.0
ROW	A	83.0
ROW	D	93.0
Recreation	А	49.0
Recreation	D	84.0
Stream	А	95.0
Stream	D	98.0

2

Custom Report (Curve Number Lookup Table)

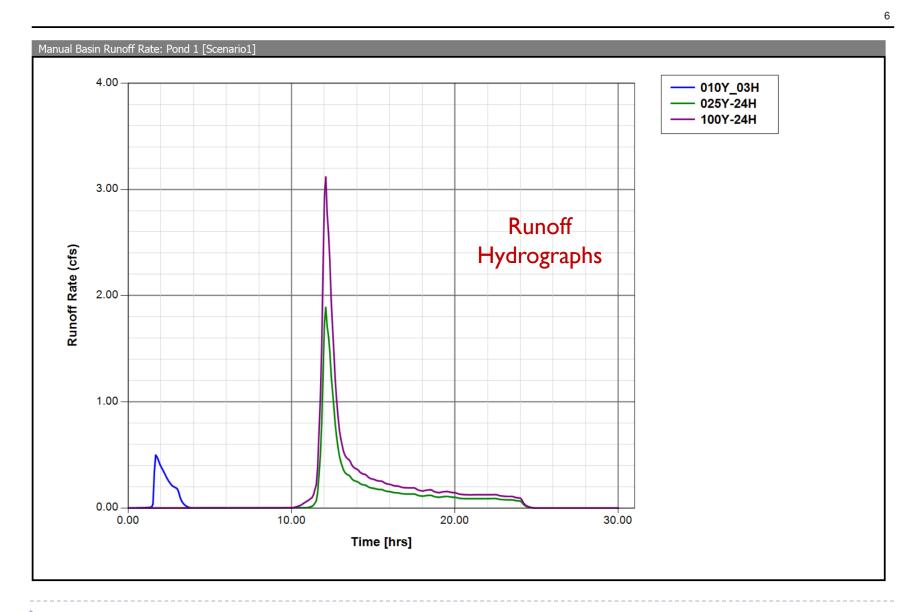
Land Cover Zone	Soil Zone	Curve Number [dec]
Trail	A	49.0
Trail	D	84.0
Wetland	A	95.0
Wetland	D	98.0

Custom Report (Impervious Lookup Table)

Impervious: No DCIA [Set]

Land Cover Zone	% Impervious	% DCIA	% Direct	Ia Impervious [in]	Ia Pervious [in]
Building and Sidewalk	0.00	0.00	0.00	0.000	0.000
Commercial	0.00	0.00	0.00	0.000	0.000
HD Residential	0.00	0.00	0.00	0.000	0.000
Industrial	0.00	0.00	0.00	0.000	0.000
Institutional	0.00	0.00	0.00	0.000	0.000
Island	0.00	0.00	0.00	0.000	0.000
LD Residential	0.00	0.00	0.00	0.000	0.000
MD Residential	0.00	0.00	0.00	0.000	0.000
Open Space	0.00	0.00	0.00	0.000	0.000
POND 1	0.00	0.00	0.00	0.000	0.000
POND 2	0.00	0.00	0.00	0.000	0.000
POND 3	0.00	0.00	0.00	0.000	0.000
Pavement	0.00	0.00	0.00	0.000	0.000
ROW	0.00	0.00	0.00	0.000	0.000
Recreation	0.00	0.00	0.00	0.000	0.000
Stream	0.00	0.00	0.00	0.000	0.000
Trail	0.00	0.00	0.00	0.000	0.000
Wetland	0.00	0.00	0.00	0.000	0.000

Custom Report (Manual Basin "Pond I")


Manual Basin: Pond 1							
	Scenario:	Scenario1					
	Node:	Pond 1					
Input Data	Hydrograph Method:	NRCS Unit Hydrograph					
	Infiltration Method:	Curve Number	iurve Number				
	Time of Concentration:	10.0000 min					
	Max Allowable Q:	0.00 cfs					
	Time Shift:	0.0000 hr					
	Unit Hydrograph:	UH256					
	Peaking Factor:	256.0					
	Area:	1.2373 ac					
Area [ac]	Land Cover Zone		Soil Zone		Rainfall Name		
	0.0063 Pavement		А				
	0.4262 Open Space		А				
	0.8047 POND 1		А				

Comment:

Manual Basin Runoff Summary

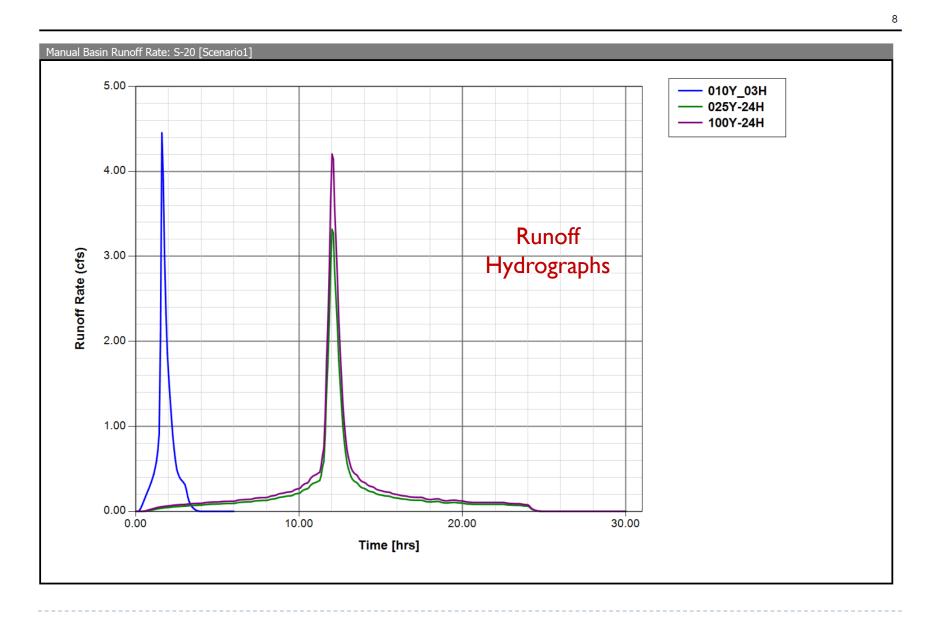
Manual Basin Ru	Manual Basin Runoff Summary [Scenario1]										
Basin Name	Sim Name	Max Flow [cfs]	Time to Max	Total Rainfall	Total Runoff	Area [ac]	Equivalent	% Imperv	% DCIA		
			Flow [hrs]	[in]	[in]		Curve Number				
Pond 1	010Y_03H	0.50	1.6917	4.30	0.41	1.2373	49.5	0.00	0.00		
Pond 1	025Y-24H	1.91	12.0750	8.40	2.42	1.2373	49.3	0.00	0.00		
Pond 1	100Y-24H	3.17	12.0667	10.50	3.80	1.2373	49.2	0.00	0.00		

Custom Report (Manual Basin "Pond I")

147

Custom Report (Manual Basin "S-20")

Manual Basin: S-20							
	Scenario:	Scenario1					
	Node:	S-20					
Input Data	Hydrograph Method:	NRCS Unit Hydrograph					
	Infiltration Method:	Curve Number	urve Number				
	Time of Concentration:	10.0000 min					
	Max Allowable Q:	0.00 cfs					
	Time Shift:	0.0000 hr					
	Unit Hydrograph:	UH256					
	Peaking Factor:	256.0					
	Area:	0.7342 ac					
Area [ac]	Land Cover Zone		Soil Zone	Rainfall Name			
	0.0176 Building and Side	walk	А				
	0.6341 Pavement		А				
	0.0823 Island		А				
	0.0002 Open Space		А				

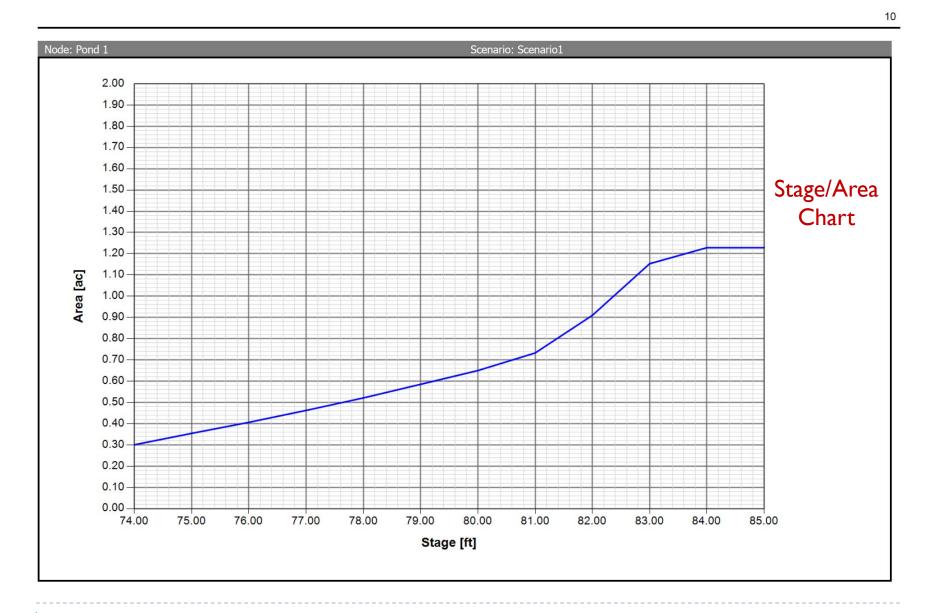

Comment:

Manual Basin Runoff Summary

Manual Basin Runoff Summary [Scenario1]

Basin Name	Sim Name	Max Flow [cfs]	Time to Max	Total Rainfall	Total Runoff	Area [ac]	Equivalent	% Imperv	% DCIA
			Flow [hrs]	[in]	[in]		Curve Number		
S-20	010Y_03H	4.52	1.6083	4.30	3.65	0.7342	94.3	0.00	0.00
S-20	025Y-24H	3.40	12.0500	8.40	7.51	0.7342	92.6	0.00	0.00
S-20	100Y-24H	4.31	12.0500	10.50	9.52	0.7342	92.0	0.00	0.00

Custom Report (Manual Basin "S-20")

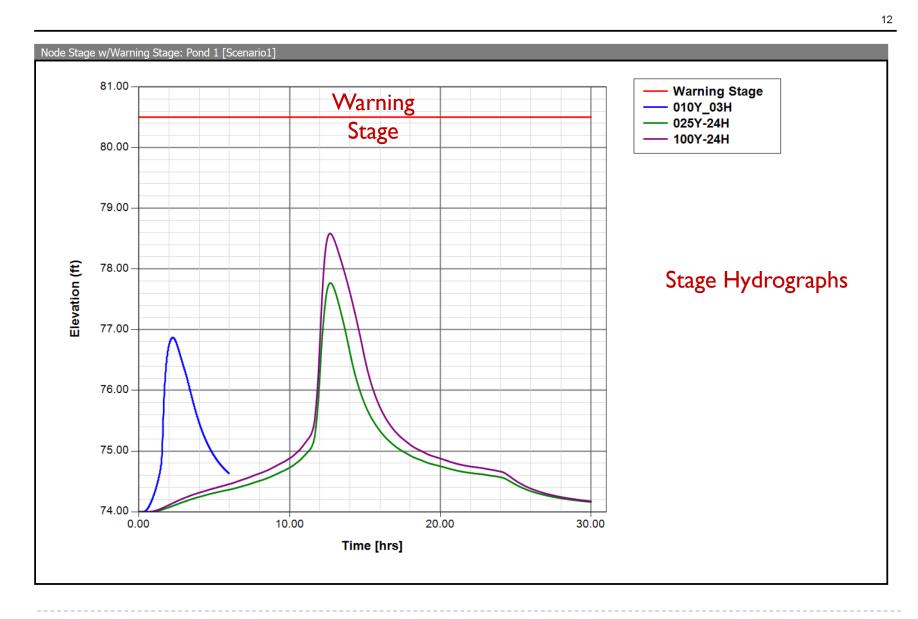

Custom Report (Node "Pond I")

Node: Pond 1				
Input Data	Scenario: Type: Base Flow: Initial Stage:	Stage/Area 0.00 cfs		
	Warning Stage:			
Stage [ft]		Area [ac]	Area [ft2]	
	74.00	0.3006	13096	
	75.00	0.3544	15436	
	76.00	0.4062	17696	
	77.00	0.4624	20140	Stage/Area Table
	78.00	0.5212	22703	
	79.00	0.5853	25494	Table
	80.00	0.6500	28316	
	81.00	0.7327	31916	
	82.00	0.9101	39644	
	83.00	1.1530	50224	
	84.00	1.2284	53511	
	85.00	1.2284	53511	

Comment:

© 2019, Streamline Technologies, Inc.

Custom Report (Node "Pond I")


151 🕨 © 2019, Streamline Technologies, Inc.

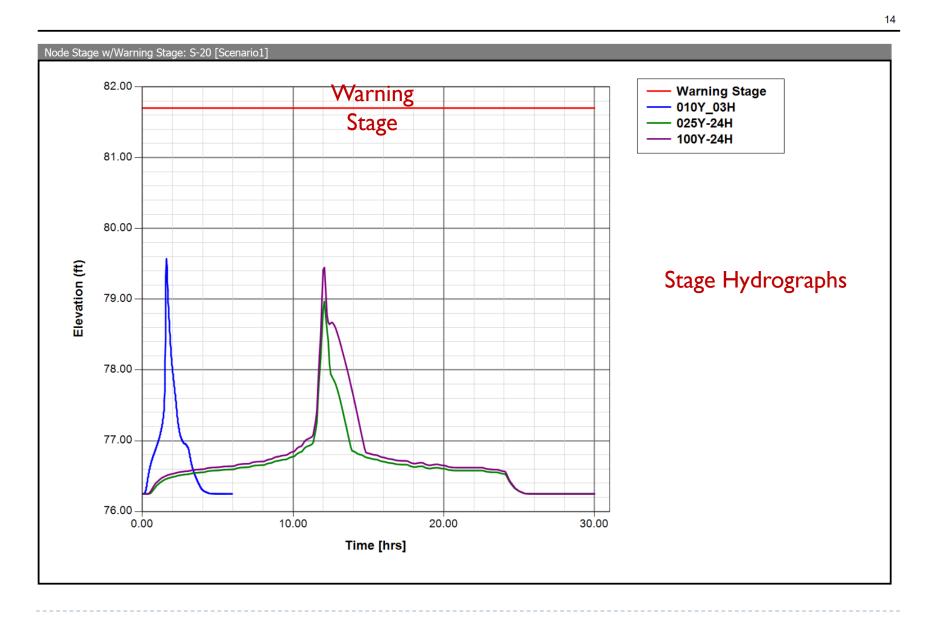
icp14

Custom Report (Node "Pond I")

Node Max Conditions	Node Max Conditions [Scenario1] Node Max Conditions								
Node Name	Sim Name	Warning Stage [ft]	Max Stage [ft]	Min/Max Delta	Max Total Inflow	Max Total Outflow	Max Surface Area		
				Stage [ft]	[cfs]	[cfs]	[ft2]		
Pond 1	010Y_03H	80.50	76.87	0.0010	40.53	14.79	20027		
Pond 1	025Y-24H	80.50	77.77	0.0010	36.01	17.61	22319		
Pond 1	100Y-24H	80.50	78.59	0.0010	47.27	19.44	24412		

Custom Report (Node "S-20")

Custom Report (Node "S-20")


						13
Node: S-20						
	Scenario:	Scenario1				
	Type:	Stage/Area				
Input Data	Base Flow:					
input Data	Initial Stage:	76.25 ft				
	Warning Stage:	81.70 ft				
Comment:						
comment.						
-						

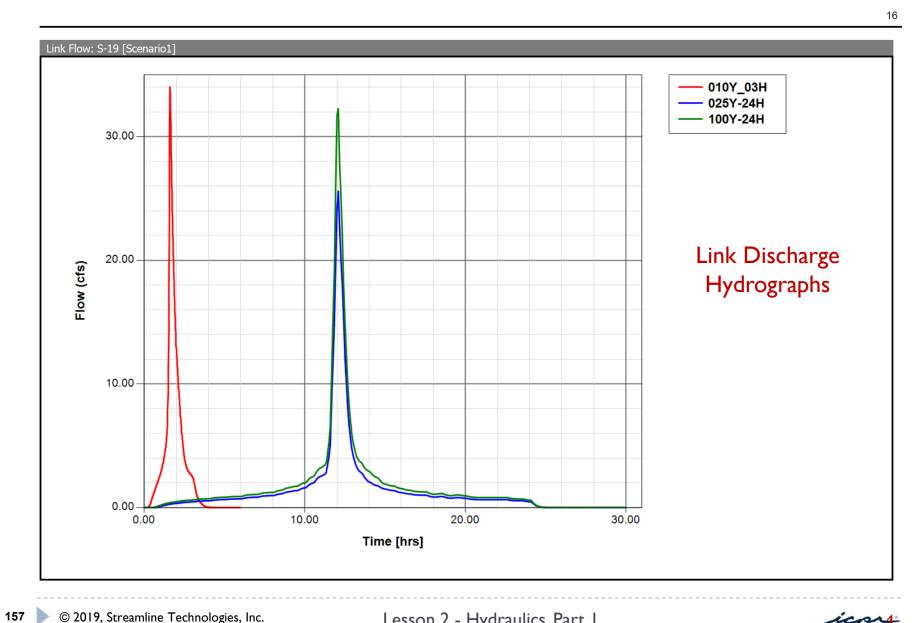
Node Max Conditions

Node Name	Sim Name	Warning Stage [ft]	Max Stage [ft]	Min/Max Delta	Max Total Inflow	Max Total Outflow	Max Surface Area
				Stage [ft]	[cfs]	[cfs]	[ft2]
S-20	010Y_03H	81.70	79.58	0.0019	34.07	34.05	603
S-20	025Y-24H	81.70	78.99	0.0010	25.85	25.84	601
S-20	100Y-24H	81.70	79.50	0.0010	32.93	32.96	602

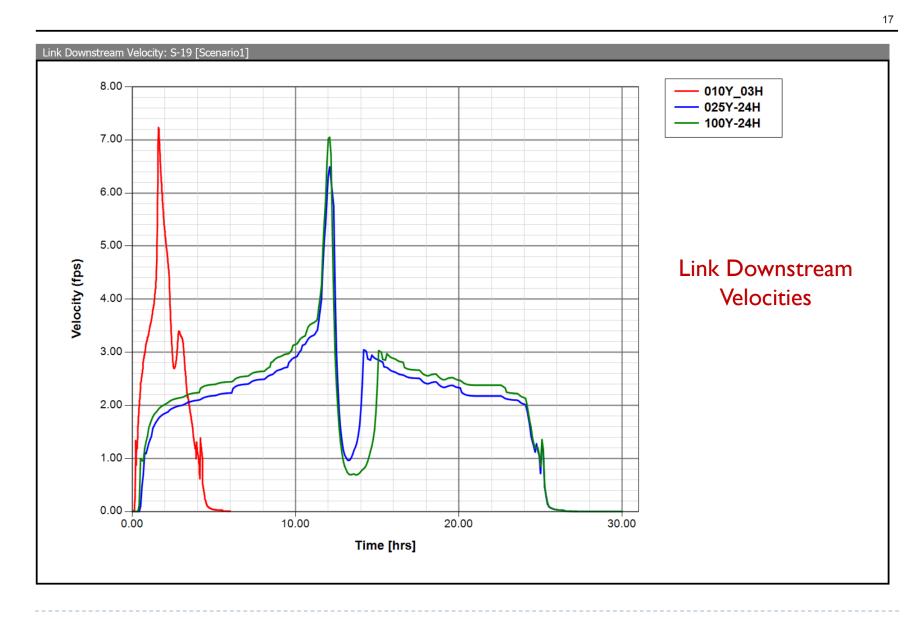
Node Max Conditions [Scenario1]

Custom Report (Node "S-20")

Custom Report (Pipe Link "S-19")


Pipe Input Data

Pipe Link: S-19		Upst	ream	Dowr	nstream
Scenario:	Scenario1	Invert:	76.25 ft	Invert:	76.00 ft
From Node:	S-20	Manning's N:	0.0130	Manning's N:	0.0130
To Node:	Pond 1	Geometry	/: Circular	Geomet	ry: Circular
Link Count:	1	Max Depth:	3.00 ft	Max Depth:	3.00 ft
Flow Direction:	Both			Bottom Clip	
Damping:	0.0000 ft	Default:	0.00 ft	Default:	0.00 ft
Length:	68.00 ft	Op Table:		Op Table:	
FHWA Code:	1	Ref Node:		Ref Node:	
Entr Loss Coef:	0.50	Manning's N:	0.0000	Manning's N:	0.0000
Exit Loss Coef:	1.00			Top Clip	
Bend Loss Coef:	0.00	Default:	0.00 ft	Default:	0.00 ft
Bend Location:	0.00 ft	Op Table:		Op Table:	
Energy Switch:	Energy	Ref Node:		Ref Node:	
		Manning's N:	0.0000	Manning's N:	0.0000

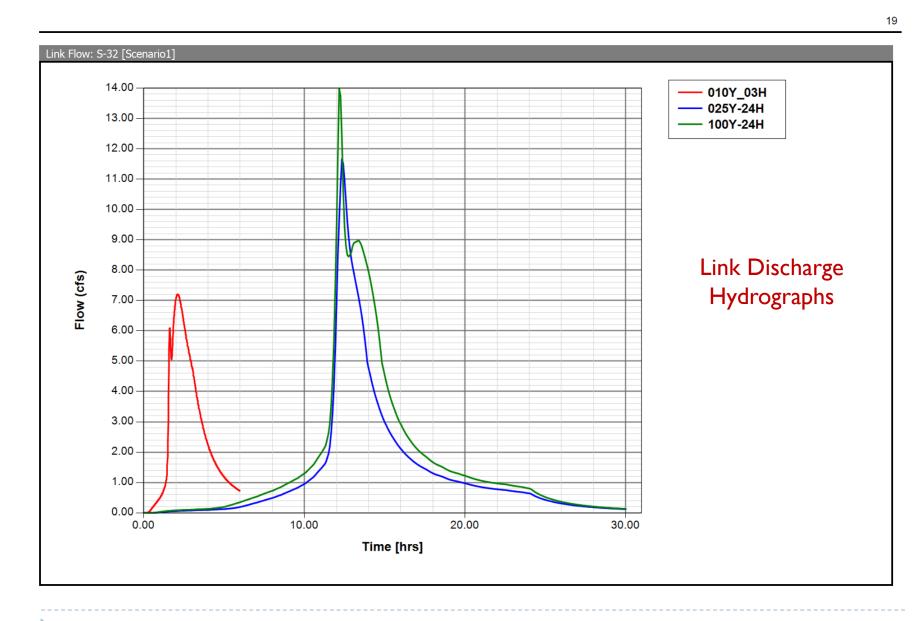

Link Min/Max Conditions

Link Min/Max Condit	Link Min/Max Conditions [Scenario1]								
Link Name	Sim Name	Max Flow [cfs]	Min Flow [cfs]	Min/Max Delta Flow	Max Us Velocity	Max Ds Velocity	Max Avg Velocity		
				[cfs]	[fps]	[fps]	[fps]		
S-19	010Y_03H	34.05	0.00	0.13	4.82	7.24	6.03		
S-19	025Y-24H	25.84	0.00	-0.09	3.82	6.50	5.16		
S-19	100Y-24H	32.96	0.00	0.13	4.66	7.20	5.93		

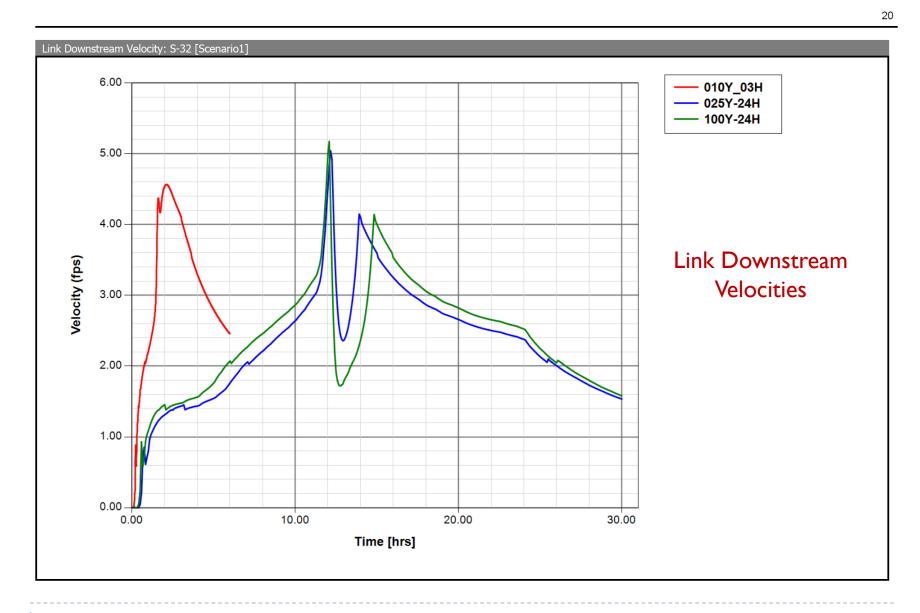
Custom Report (Pipe Link "S-19")

Custom Report (Pipe Link "S-19")

Custom Report (Pipe Link "S-32")

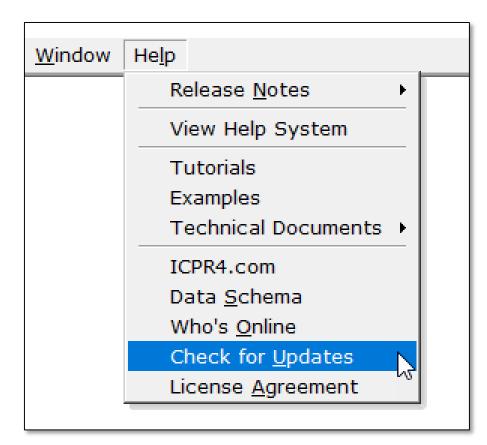

Pipe Input Data

Pipe Link: S-32		Upst	ream	Dow	nstream
Scenario:	Scenario1	Invert:	76.10 ft	Invert	: 76.00 ft
From Node:	S-33	Manning's N:	0.0130	Manning's N	: 0.0130
To Node:	Pond 1	Geometry	y: Circular	Geome	try: Circular
Link Count:	1	Max Depth:	2.50 ft	Max Depth	: 2.50 ft
Flow Direction:	Both			Bottom Clip	
Damping:	0.0000 ft	Default:	0.00 ft	Default	: 0.00 ft
Length:	91.00 ft	Op Table:		Op Table	:
FHWA Code:	1	Ref Node:		Ref Node	:
Entr Loss Coef:	0.50	Manning's N:	0.0000	Manning's N	: 0.0000
Exit Loss Coef:	1.00			Top Clip	
Bend Loss Coef:	0.00	Default:	0.00 ft	Default	: 0.00 ft
Bend Location:	0.00 ft	Op Table:		Op Table	:
Energy Switch:	Energy	Ref Node:		Ref Node	:
		Manning's N:	0.0000	Manning's N	: 0.0000


Link Min/Max Conditions

Link Min/Max Condit	ions [Scenario1]						
Link Name	Sim Name	Max Flow [cfs]	Min Flow [cfs]	Min/Max Delta Flow	Max Us Velocity	Max Ds Velocity	Max Avg Velocity
				[cfs]	[fps]	[fps]	[fps]
S-32	010Y_03H	7.20	0.00	-0.02	2.33	4.56	3.45
S-32	025Y-24H	11.70	0.00	-0.04	2.94	5.12	3.88
S-32	100Y-24H	14.09	0.00	-0.04	3.17	5.28	4.02

Custom Report (Pipe Link "S-32")



Custom Report (Pipe Link "S-32")

Next Webinar – Lesson 3: Hydraulics, Part 2

Tuesday October 29, 2019 11:30 – 1:30 (EDT)

We will try to post a recording of this webinar and/or the presentation material as soon as we can. To find them: "Check for Updates" sometime tomorrow.

support@icpr4.com