ic

Regulatory Review Webinar Series

Lesson 1 Building Blocks & Hydrology

Peter J. Singhofen Streamline Technologies, Inc.

Monday – October 21, 2019

Next Webinar – Lesson 2: Hydraulics, Part 1

Wednesday October 23, 2019 11:30 – 1:30 (EDT)

We will try to post a recording of this webinar and/or the presentation material as soon as we can. To find them: "Check for Updates" in about a week or so.

support@icpr4.com

Objectives of the Regulatory Review Webinar Series

- Learn details of ICPR4 computational methods
- Learn about input data requirements
- Learn about ICPR4's reporting system

Objectives of the Regulatory Review Webinar Series

- Learn details of ICPR4 computational methods
- Learn about input data requirements
- Learn about ICPR4's reporting system

What's not included:

- 2D overland flow
- 2D groundwater
- Details of the graphical user interface
- Importing/drawing background images, map layers and surfaces

Lesson I Topics

- ICPR4 Building Blocks
- Hydrology
 - Curve Number Method
 - NRCS Unit Hydrograph Method
 - SBUH Method
 - Working with Rainfall Data
- Examples & Reports
 - Land-Locked System
 - FDOT Critical Storm Analysis using the NOAA Atlas 14 Precipitation Data

6

ICPR Building Blocks

- Nodes, Links, Basins -

- Runoff hydrographs from Basins are assigned to Nodes
- Stages are calculated at Nodes
- Flows are calculated for Links based on the stages at the connecting nodes

ICPR Building Blocks

- Nodes, Links, Basins -

- Curve Number Method
- Green-Ampt Method
- Vertically Layered Kinematic Method

2-Layer Green-Ampt Schematic

$$Q = \frac{(P - 0.2S)^2}{(P + 0.8S)}$$

 $S = \frac{1000}{CN} - 10$

 $I_{a} = 0.2S$

[eq. 2-3]

non-linear relationship between rainfall and runoff

[eq. 2-4]

[eq. 2-2]

- $Q = \operatorname{runoff}(\operatorname{in})$
- P = rainfall (in)
- *S* = potential maximum retention after runoff begins (in)
- I_a = initial abstraction (in)

10

Table 2-2a Runoff curve numbers for urban areas 1/

Cover description			Curve nu -hydrologic	umbers for soil group	
•	Average percent				
Cover type and hydrologic condition	impervious area ⅔	Α	В	С	D
Fully developed urban areas (vegetation established)					
Open space (lawns, parks, golf courses, cemeteries, etc.)	/ <u>:</u>				
Poor condition (grass cover < 50%)		68	79	86	89
Fair condition (grass cover 50% to 75%)		49	69	79	84
Good condition (grass cover > 75%)		39	61	74	80
Impervious areas:					
Paved parking lots, roofs, driveways, etc.					
(excluding right-of-way)		98	98	98	98
Streets and roads:					
Paved; curbs and storm sewers (excluding					
right-of-way)		98	98	98	98
Paved; open ditches (including right-of-way)		83	89	92	93
Gravel (including right-of-way)		76	85	89	91
Dirt (including right-of-way)		72	82	87	89
Western desert urban areas:					
Natural desert landscaping (pervious areas only) 4/		63	77	85	88
Artificial desert landscaping (impervious weed barrier,					
desert shrub with 1- to 2-inch sand or gravel mulch					
and basin borders)		96	96	96	96
Urban districts:					
Commercial and business		89	92	94	95
Industrial		81	88	91	93
Residential districts by average lot size:					
1/8 acre or less (town houses)		77	85	90	92
1/4 acre		61	75	83	87
1/3 acre		57	72	81	86
1/2 acre		54	70	80	85
1 acre		51	68	79	84
2 acres		46	65	77	82
Developing urban areas					
Newly graded areas					
(pervious areas only, no vegetation) ⁵ /		86	91	94	

Lesson I – Building Blocks & Hydrology

11

icp

- ² The average percent impervious area shown was used to develop the composite CN's. Other assumptions are as follows:
 - 1. impervious areas are <u>directly connected</u> to the drainage system
 - 2. impervious areas have a CN of 98
 - 3. pervious areas are considered equivalent to open space in good hydrologic condition

	<u>% IMP</u>	<u>A</u>	<u>B</u>	<u>C</u>	D
Urban districts:					
Commercial and business	85	89	92	94	95
Industrial	72	81	88	91	93
Residential districts by average lot size:					
1/8 acre or less (town houses)	- 65	77	85	90	92
1/4 acre	38	61	75	83	87
1/3 acre	30	57	72	81	86
1/2 acre	25	54	70	80	85
1 acre	20	51	68	79	84
9 acros	19	46	65	77	82
2 acres	14	40	05		04
	i di	Ani	ોમ		
	W-	14 A.			
	k	31	and the second se		
	ετ	,7 <u>5</u> 4-	7L		
	•	·***			
	. Alter	20			

13

Example: Calculating "Lumped" CN

Land Cover: Hydrologic Soil Group: Average Impervious: Residential ¹/₄-ac lots A 38%

Lumped CN (a.k.a., area weighted average)

= 98 (38%) = 39 (62%, open space good condition) = (0.38 × 98) + (0.62 × 39) = 61.4 <u>say 61</u>

Runoff Example (Lumped CN Approach)

Land Cover:Residential 1/4-ac lotsHydrologic Soil Group:ARainfall:6 inches

CN = 61
S = (1000/CN) - 10 = 6.39"
I_a = 0.2S = 1.28"
$$\leftarrow$$

Q = (P - 0.2S)² / (P + 0.8S) = 2.01"

Runoff Example (Distributed CN Approach)

Land Cover: Hydrologic Soil Group: Impervious Area: Pervious Area: Rainfall: Residential ¹/₄-ac lots A 38% (CN = 98) 62% (CN = 39) 6 inches

© 2019, Streamline Technologies, Inc.

16

© 2019, Streamline Technologies, Inc.

17

Runoff Comparison Lumped & Distributed Approaches

Land Cover: Hydrologic Soil Group: Impervious Area: Pervious Area: Rainfall (varies): Residential ¹/₄-ac lots A 38% (CN = 98) 62% (CN = 39) 4, 6, 8 & 10 inches

Method	P = 4"	P = 6"	P = 8"	P = 10"
Lumped	0.81"	2.01"	3.44"	5.03"
Distributed	1.46"	2.47"	3.67"	5.01"
% Diff	+80%	+23%	+7%	-0.4%

Comparison Q(lumped) and Q(distributed)

 Lumped approach: runoff volume based on a single "area weighted average" CN – assumes linear relationship between CN and runoff

- Lumped approach: runoff volume based on a single "area weighted average" CN – assumes linear relationship between CN and runoff
- Distributed approach: total runoff volume based on summation of runoff volumes for each unique land cover/HSG combination – assumes non-linear relationship between CN and runoff

- Lumped approach: runoff volume based on a single "area weighted average" CN – assumes linear relationship between CN and runoff
- Distributed approach: total runoff volume based on summation of runoff volumes for each unique land cover/HSG combination – assumes non-linear relationship between CN and runoff
- Lumped approach simpler to implement but less accurate, especially for lower rainfalls

- Lumped approach: runoff volume based on a single "area weighted average" CN – assumes linear relationship between CN and runoff
- Distributed approach: runoff volume based on summation of runoff volumes for each unique land cover/HSG combination – assumes non-linear relationship between CN and runoff
- Lumped approach simpler to implement but less accurate, especially for lower rainfalls
- Distributed approach more complicated to implement but also more accurate

Curve Number (CN) Method Implementation of Lumped & Distributed Approaches in ICPR4

S <u>c</u> enarios	<u>Hydrology</u>	1D Hydraulics	Reference			
	<u>Simple Basins (Lumped)</u>					
	Ma <u>n</u> ual I	a <u>n</u> ual Basins (Distributed)				

Curve Number (CN) Method "Simple Basin" uses a Lumped Approach

Name	SIMPLE BASIN				
Scenario	LUMP-DIST •				
Node	22		Area	10	
Hydrograph Method	NRCS Unit Hydrograph	Curve Nun	ıber	61	
Infiltration Method	Curve Number 🔻	% Imperv	ious	0	
Time of Concentration	10	% [OCIA	0	
Max Allowable Q	0	% Di	rect	0	
Time Shift	0	Rainfall N	ame		
Unit Hydrograph	UH484				
Peaking Factor	484				
Comment	SFR 1/4 AC LOTS - TYPE A SOILS				A

"Manual Basin" uses a Distributed Approach

We will discuss reports in greater depth later. For now, this is a runoff summary "custom" report for 4 simulations of 4", 6", 8" and 10", respectively.

Simple Basin Runoff Summary [LUMP-DIST] Simple Basin (Lumped Method)									
Basin Name	Sim Name	Max Flow [cfs]	Time to Max Flow [hrs]	Total Rainfall [in]	Total Runoff [in]	Area [ac]	Equivalent Curve Number	% Imperv	% DCIA
SIMPLE BASIN	04-INCH	10.38	12.0500	4.000	0.814	10.0000	61.0	0.00	0.00
SIMPLE BASIN	06-INCH	27.48	12.0333	6.000	2.010	10.0000	61.0	0.00	0.00
SIMPLE BASIN	08-INCH	47.54	12.0333	8.000	3.453	10.0000	61.0	0.00	0.00
SIMPLE BASIN	10-INCH	69.06	12.0333	10.000	5.045	10.0000	61.0	0.00	0.00
		•	•						
Manual Davia Du			inual Basi	n (Distril	outed Me	ethod)			
Manual Basin Ru	noff Summary [LU	MP-DIST] Ma	inual Basi	n (Distril	outed Me	thod)			
Manual Basin Ru Basin Name	noff Summary [LU Sim Name	MP-DIST] Max Flow [cfs]	Time to Max Flow [hrs]	n (Distril Total Rainfall [in]	Duted Me Total Runoff [in]	e thod) Area [ac]	Equivalent Curve Number	% Imperv	% DCIA
Manual Basin Ru Basin Name MANUAL BASIN	noff Summary [LU Sim Name 04-INCH	MP-DIST] Max Flow [cfs] 16.54	Time to Max Flow [hrs] 12.0167	n (Distril Total Rainfall [in] 4.000	Duted Me Total Runoff [in] 1.463	e thod) Area [ac] 10.0000	Equivalent Curve Number 72.0	% Imperv 0.00	% DCIA 0.00
Manual Basin Ru Basin Name MANUAL BASIN MANUAL BASIN	noff Summary [LU Sim Name 04-INCH 06-INCH	MP-DIST] Max Max Flow [cfs] 16.54 26.12	Time to Max Flow [hrs] 12.0167 12.0333	n (Distril Total Rainfall [in] 4.000 6.000	Duted Me Total Runoff [in] 1.463 2.472	e <mark>thod)</mark> Area [ac] <u>10.0000</u> 10.0000	Equivalent Curve Number 72.0 66.3	% Imperv 0.00 0.00	% DCIA 0.00 0.00
Manual Basin Ru Basin Name MANUAL BASIN MANUAL BASIN MANUAL BASIN	noff Summary [LU Sim Name 04-INCH 06-INCH 08-INCH	MP-DIST] Ma Max Flow [cfs] 16.54 26.12 40.85	Time to Max Flow [hrs] 12.0167 12.0333 12.0333	n (Distril Total Rainfall [in] 4.000 6.000 8.000	Duted Me Total Runoff [in] 1.463 2.472 3.675	ethod) Area [ac] 10.0000 10.0000 10.0000	Equivalent Curve Number 72.0 66.3 63.0	% Imperv 0.00 0.00 0.00	% DCIA 0.00 0.00 0.00

© 2019, Streamline Technologies, Inc.

Curve Number (CN) Method Equivalent CNs – what are they?

Total Rainfall	Total Runoff	Area [ac]	Equivalent
[in]	[in]		Curve Number
4.000	1.463	10.0000	72.0
6.000	2.472	10.0000	66.3
8.000	3.675	10.0000	63.0
10.000	5.021	10.0000	60.8

Equivalent CNs vary with rainfall when using Manual Basins (distributed method)

Curve Number (CN) Method Equivalent CNs – what are they?

Total Rainfall	Total Runoff	Area [ac]	Equivalent
[in]	[in]		Curve Number
4.000	1.463	10.0000	72.0
6.000	2.472	10.0000	66.3
8.000	3.675	10.0000	63.0
10.000	5.021	10.0000	60.8
			<u>_</u>

Solve for Equivalent CN from Total Rainfall and Runoff

Comparison of Runoff Rates Rainfall = 4"

Comparison of Runoff Rates Rainfall = 10"

33 © 2019, Streamline Technologies, Inc.

Comparison of Rainfall Excess Volumes Rainfall = 10"

© 2019, Streamline Technologies, Inc.

34

Impervious Areas

Source: Urbonas, 1993

Impervious Areas

Source: Urbonas, 1993
Name	SIMPLE BASIN]			
Scenario	LUMP-DIST •]			
Node	22]	Area	10	
Hydrograph Method	NRCS Unit Hydrograph 🔹]	Curve Number	61	
Infiltration Method	Curve Number]	% Impervious	0	
Time of Concentration	10]	% DCIA	0	
Max Allowable Q	0]	% Direct	0	
Time Shift	0]	Rainfall Name		
Unit Hydrograph	UH484]			
Peaking Factor	484]			
Comment	SFR 1/4 AC LOTS - TYPE A SOILS				A

 Directly Connected Impervious Areas (DCIAs) are those impervious areas that are hydraulically connected to the conveyance system and then to the basin outlet point without flowing over pervious areas.

% Impervious and % DCIA Example DCIA

% Impervious and % DCIA Example DCIA

% Impervious and % DCIA Example DCIA

- Directly Connected Impervious Areas (DCIAs) are those impervious areas that are hydraulically connected to the conveyance system and then to the basin outlet point without flowing over pervious areas.
- Conversely, non-DCIAs are those impervious areas that flow over pervious areas before entering the conveyance system, and subsequently either joining the DCIAs or flowing to the basin outlet as sheet flow.

% Impervious and % DCIA Example Non-DCIA

% Impervious and % DCIA Example Non-DCIA

- Directly Connected Impervious Areas (DCIAs) are those impervious areas that are hydraulically connected to the conveyance system and then to the basin outlet point without flowing over pervious areas.
- Conversely, Non-DCIAs are those impervious areas that flow over pervious areas before entering the conveyance system, and subsequently either joining the DCIAs or flowing to the basin outlet as sheet flow.
- Total Impervious Area (TIA) is equal to the sum of DCIA and non-DCIA.

Recall the following assumptions from TR-55 that are implicit in the CN table:

² The average percent impervious area shown was used to develop the composite CN's. Other assumptions are as follows:

- 1. <u>impervious areas are directly connected</u> to the drainage system
- 2. impervious areas have a CN of 98
- 3. <u>pervious areas are considered equivalent to open space</u> in good hydrologic condition

	<u>% IMP</u>	A	<u>B</u>	<u>C</u>	D
Urban districts:					
Commercial and business	85	89	92	94	95
Industrial	72	81	88	91	93
Residential districts by average lot size:					
1/8 acre or less (town houses)	- 65	77	85	90	92
1/4 acre	38	61	75	83	87
1/3 acre		57	72	81	86
1/2 acre	25	54	70	80	85
1 acre	20	51	68	79	84
2 acres	12	46	65	77	82

(residential with ¹/₄-ac lots, type A soils)

The TR-55 assumptions can be included in the "Simple Basin" data form as follows:

Name	SIMP BASIN 2			
Scenario	LUMP-DIST-EXL2			
Node	ZZ	Area	10	
Hydrograph Method	NRCS Unit Hydrograph 🔹	Curve Number	39	
Infiltration Method	Curve Number	% Impervious	38	
Time of Concentration	10	% DCIA	38	
Max Allowable Q	0	% Direct	0	
Time Shift	0	Rainfall Name		
Unit Hydrograph	UH484			
Peaking Factor	484			
Comment	SFR 1/4 AC LOTS - TYPE A SOILS	5		

Curve Number % Impervious % DCIA

- = 39 represents open space in good condition for type A soil.
- = 38% is the TR-55 assumption for residential ¹/₄-ac lots
- = 38% is the TR-55 assumption that all impervious areas are directly connected to the drainage system

(residential with ¹/₄-ac lots, type A soils)

(residential with 1/4-ac lots, type A soils)

50

Lesson I - Building Blocks & Hydrology

(residential with ¹/₄-ac lots, type A soils)

Simple Basin Rur	noff Summary [LUN	MP-DIST-EXL2]								
Basin Name	Sim Name	Max Flow [cfs]	Т	me to Max	Total Rainfall	Total Runoff	Area [ac]	Equivalent	% Imperv	% DCIA
			F	ow [hrs]	[in]	[in]		Curve Number		
SIMP BASIN 1	04-INCH	10.38		12.0500	4.000	0.814	10.0000	61.0	0.00	0.00
SIMP BASIN 2	04-INCH	16.67		12.0167	4.000	1.552	10.0000	73.3	38.00	38.00
SIMP BASIN 1	06-INCH	27.48		12.0333	6.000	2.010	10.0000	61.0	0.00	0.00
SIMP BASIN 2	06-INCH	26.21		12.0333	6.000	2.562	10.0000	67.3	38.00	38.00
SIMP BASIN 1	08-INCH	47.54		12.0333	8.000	3.453	10.0000	61.0	0.00	0.00
SIMP BASIN 2	08-INCH	40.91		12.0333	8.000	3.767	10.0000	63.8	38.00	38.00
SIMP BASIN 1	10-INCH	69.06		12.0333	10.000	5.045	10.0000	61.0	0.00	0.00
SIMP BASIN 2	10-INCH	57.90		12.0333	10.000	5.113	10.0000	61.5	38.00	38.00

Basin Name	Sim Name	Max Flow [cfs]	
SIMP BASIN 1	04-INCH	10.38	
SIMP BASIN 2	04-INCH	16.67	-
SIMP BASIN 1	06-INCH	27.48	
SIMP BASIN 2	06-INCH	26.21	*
SIMP BASIN 1	08-INCH	47.54	
SIMP BASIN 2	08-INCH	40.91	
SIMP BASIN 1	10-INCH	69.06	
SIMP BASIN 2	10-INCH	57.90	×

The highlighted max flows (DCIA included) are very close to the manual basin "distributed" approach previously presented.

(residential with 1/4-ac lots, type A soils)

Simple Basin Ru	noff Summary [LUN	MP-DIST-EXL2]																	
Basin Name	Sim Name	Max Flow [cfs]	Time to Max	Total Rainfall	Total Runoff	Area [ac]	Equivalent	% Imperv	% DCIA										
			Flow [hrs]	[in]	[in]		Curve Number												
SIMP BASIN 1	04-INCH	10.38	12.0500	4.000	0.814	10.0000	61.0	0.00	0.00										
SIMP BASIN 2	04-INCH	16.67	12.0167	4.000	1.552	10.0000	73.3	38.00	38.00										
SIMP BASIN 1	06-INCH	27.48	12.0333	6.000	2.010	10.0000	61.0	0.00	0.00										
SIMP BASIN 2	06-INCH	26.21	12.0333	6.000	2.562	10.0000	67.3	38.00	38.00										
SIMP BASIN 1	08-INCH	47.54	12.0333	8.000	3.453	10.0000	61.0	0.00	0.00										
SIMP BASIN 2	08-INCH	40.91	12.0333	8.000	3.767	10.0000	63.8	38.00	38.00										
SIMP BASIN 1	10-INCH	69.06	12.0333	10.000	5.045	10.0000	61.0	0.00	0.00										
SIMP BASIN 2	10-INCH	57.90	12.0333	10.000	5.113	10.0000	61.5	38.00	38.00										
								<i>(</i>											

Basin Name	Total Rainfall	Total Runoff	Area [ac]	Equivalent	
	[in]	[in]		Curve Number	
SIMP BASIN 1	4.000	0.814	10.0000	61.0	
SIMP BASIN 2	4.000	1.552	10.0000	73.3	Equivalant CNI
SIMP BASIN 1	1 6.000	2.010	10.0000	61.0	
SIMP BASIN 2	6.000	2.562	10.0000	67.3	Varies with
SIMP BASIN 1	8.000	3.453	10.0000	61.0	rainfall when
SIMP BASIN 2	8.000	3.767	10.0000	63.8	← % IMP & % DCIA
SIMP BASIN 1	10.000	5.045	10.0000	61.0	are used
SIMP BASIN 2	10.000	5.113	10.0000	61.5	

The following TR-55 assumption is very conservative, especially for residential with $\frac{1}{4}$ -ac lots:

² The average percent impervious area shown was used to develop the composite CN's. Other assumptions are as follows:

1. <u>impervious areas are directly connected</u> to the drainage system

Assuming the impervious area is evenly split between DCIA and non-DCIA is more reasonable:

54

Lesson I – Building Blocks & Hydrology

% Impervious & % DCIA can be included in the "Simple Basin" data form as follows:

Name	SIMP BASIN 3			
Scenario	LUMP-DIST-EXL2			
Node	ZZ	Area	10	
Hydrograph Method	NRCS Unit Hydrograph 🔹	Curve Number	39	
Infiltration Method	Curve Number 💌	% Impervious	38	
Time of Concentration	10	% DCIA	19	
Max Allowable Q	0	% Direct	0	
Time Shift	0	Rainfall Name		
Unit Hydrograph	UH484			
Peaking Factor	484			
Comment	SFR 1/4 AC LOTS - TYPE A SOILS	3		

Curve Number % Impervious % DCIA

55

= 39 represents open space in good condition for type A soil.
= 38% is the TR-55 assumption for residential ¹/₄-ac lots
= 19% assumes 50% of impervious area is directly connected

(residential with 1/4-ac lots, type A soils)

(residential with 1/4-ac lots, type A soils)

Simple Basin Runoff Summary [LUMP-DIST-EXL2]					residential with 74-ac iots, type A solis)							
	Basin Name	Sim Name	Max Flow [cfs]		ime to Max	Total Rainfall	Total Runoff	Area [ac]	Equivalent	% Imperv	% DCI	A
	SIMP BASIN 1	04-INCH	10.38		12,0500	4,000	0,814	10,0000	61.	0.00		0.00
	SIMP BASIN 2	04-INCH	16.67	_	12.0167	4.000	1.552	10.0000	73.	3 38.00		38.00
	SIMP BASIN 3	04-INCH	8.45		12.0333	4.000	0.916	10.0000	62.	9 38.00		19.00
	SIMP BASIN 1	06-INCH	27.48		12.0333	6.000	2.010	10.0000	61.	0.00		0.00
	SIMP BASIN 2	06-INCH	26.21		12.0333	6.000	2.562	10.0000	67.	3 38.00		38.00
	SIMP BASIN 3	06-INCH	19.60		12.0333	6.000	1.820	10.0000	58.	7 38.00		19.00
	SIMP BASIN 1	08-INCH	47.54		12.0333	8.000	3.453	10.0000	61.0	0.00		0.00
	SIMP BASIN 2	08-INCH	40.91		12.0333	Basir	n Name	Sim Nam	ne	Max Flow [cf	fs]	38.00
	SIMP BASIN 3	08-INCH	35.25	_	12.0333							19.00
	SIMP BASIN 1	10-INCH	69.06	_	12.0333							0.00
	SIMP BASIN 2	10-INCH	57.90		12.0333	SIME	BASIN 1	04-INCH		10	.38	38.00
1	STMIN RAPIN 3	TO-INCH	53.11	/	12.0333	STM				16	67	19.00
						51141	DASIN Z	04-11/CH		16	.0/	
						SIME	P BASIN 3	04-INCH		8	.45	-
						SIME	P BASIN 1	06-INCH		27	.48	
		Max flo	ows are			SIME	P BASIN 2	06-INCH		26	.21	
		:			vhan	SIME	P BASIN 3	06-INCH		19	.60	•
	cons	iscently	lower	V	vnen	SIMP	P BASIN 1	08-INCH		47	.54	
	50% of the impervious					SIMP	P BASIN 2	08-INCH		40	.91	
		roa is n			Δ	SIMP	P BASIN 3	08-INCH		35	.25	•
	d	area is non-DCIA			SIMP	P BASIN 1	10-INCH		69	.06		
						SIMP	P BASIN 2	10-INCH		57	.90	

(residential with ¹/₄-ac lots, type A soils)

10-INCH

SIMP BASIN 3

53.11

© 2019, Streamline Technologies, Inc.

Simple Basin Runoff Summary [LUMP-DIST-EXL2]

(residential with 1/4-ac lots, type A soils)

Basir	n Name	Sim Name	Max Flow [cfs]	Time to Ma Flow [hrs]	ЭХ	Total Rainfall [in]	Tota [in]	I Runoff	Area [ac]	Equivalent Curve Number	% Imperv	% DCIA			
SIMP	BASIN 1	04-INCH	10.38	12.	0500	4.000	E	0.814	10.000	61.0	0.00	0.00	1		
SIMP	BASIN 2	04-INCH	16.67	12.	0167	4.000		1.552	10.000	73.3	38.00	38.00	1		
SIMP	P BASIN 3	04-INCH	8.45	12.	0333	4.000		0.916	10.000	62.9	38.00	19.00]		
SIMP	PBASIN 1	06-INCH	27.48	12.	0333	6.000		2.010	10.000	61.0	0.00	0.00			
SIMP	BASIN 2	06-INCH	26.21	12.	0333	6.000		2.562	10.0000	67.3	38.00	38.00			
SIMP	P BASIN 3	06-INCH	19.60	12.	0333	6.000		1.820	10.0000	58.7	38.00	19.00	-		
SIMP	BASIN 1	08-INCH	4/.54	12.	0333	8.000		3.453	10.0000	61.0	0.00	0.00	$\frac{1}{2}$		
SIM	Equiva	alent	% Imperv		%	DCIA		2 975	10.000	56.7	38.00	19.00	1		
SIM	Curve	Number						5.045	10.000	61.0	0.00	0.00	1		
SIM		61.0		0.00		0.0	20	5.113	10.000	61.5	38.00	38.00	1		
SIM		61.0		0.00		0.0	0	4.304	10.000	55.5	38.00	19.00			
		73.3		38.00		38.0	00								
	_	→ 62.9		38.00		19.0	00								
		61.0		0.00		0.0	00								
		67.3		38.00		38.0	00		The	equiva	lent CN	N is			
	_	→ 58.7		38.00		19.0	00		conci			when			
		61.0		0.00		0.0	00		CONSIS	stentiy	lower v	vnen			
		63.8		38.00		38.0	00		50%	of the i	imperv	ious			
	_	→ 56.7		38.00		19.0	00		ar	oo is na		Δ			
		61.0		0.00		0.0	00		al						
		61.5		38.00		38.0	00								
		→ 55.5		38.00		19.0	00	(r	esidential	with 1/4-a	c lots, typ	e A soils)		

The "% Direct" parameter is used to apply rainfall directly to a basin's outlet, bypassing any type of hydrograph techniques like the NRCS unit hydrograph method. It is optional and can be used for water bodies.

59

Lesson I – Building Blocks & Hydrology

Example*

The basin (red dotted line) shown to the right drains into a wet detention pond (blue shaded area).

- Hydrologic Soil Group "C"
- Basin Area: 20 ac
- Impervious Area: I3 ac
- DCIA: 8 ac
- Pond Area: 2 ac

TC calculated to water's edge

* The above are not actual values and are for illustrative purposes only.

60

Lesson I – Building Blocks & Hydrology

The "% Direct" parameter is used to apply rainfall directly to a basin's outlet, bypassing any type of hydrograph techniques like the NRCS unit hydrograph method. It is optional and can be used for water bodies.

The "Simple Basin" parameters are set as follows:

CN = 74 (open space good condition, type "C" soils)

% Impervious	$= (13/20) \times 100$	= 65%
% DCIA	= (8/20) × 100	= 40%
% Direct	= (2/20) × 100	= 10%

The following rules apply to simple basins, impervious lookup tables and curve number lookup tables:

 The CN represents everything that is not % Impervious and not % Direct

The following rules apply to simple basins, impervious lookup tables and curve number lookup tables:

- I. The CN represents everything that is not % Impervious and not % Direct
- 2. % DCIA can never exceed % Impervious

The following rules apply to simple basins, impervious lookup tables and curve number lookup tables:

- I. The CN represents everything that is not % Impervious and not % Direct
- 2. % DCIA can never exceed % Impervious
- 3. If % Impervious is 100, then % DCIA must be 100

The following rules apply to simple basins, impervious lookup tables and curve number lookup tables:

- I. The CN represents everything that is not % Impervious and not % Direct
- 2. % DCIA can never exceed % Impervious
- 3. If % Impervious is 100, then % DCIA must be 100
- 4. % Impervious plus % Direct can never exceed 100

I. Be consistent between PRE and POST conditions.

- I. Be consistent between PRE and POST conditions.
- The distributed method is a more accurate approach but do not expect a single curve number for each basin. Also, the equivalent curve number will likely vary by storm event.

- I. Be consistent between PRE and POST conditions.
- The distributed method is a more accurate approach but do not expect a single curve number for each basin. Also, the equivalent curve number will likely vary by storm event.
- 3. If the "lumped" approach (simple basins) is used, a separate worksheet should be provided with area weighted curve number calculations.

- I. Be consistent between PRE and POST conditions.
- The distributed method is a more accurate approach but do not expect a single curve number for each basin. Also, the equivalent curve number will likely vary by storm event.
- 3. If the "lumped" approach (simple basins) is used, a separate worksheet should be provided with area weighted curve number calculations.
- 4. If the "distributed" approach (manual basins) is used, the manual basin input report will include the breakdown of area, land cover and soil combinations. However, it is important that the Impervious and Curve Number lookup tables also be provided (covered in example #1).

NRCS Unit Hydrograph Method

A unit hydrograph is the hydrograph resulting from one inch of rainfall excess generated uniformly over a catchment area at a contant rate during a specified time interval.

NRCS Unit Hydrograph Method

 $q_{p} = \frac{(K')(A)(Q)}{t_{p}}$ $t_{p} = \frac{2}{3}t_{c}$

 q_p

 t_p

- peak discharge of unit hydrograph (f³s⁻¹)
- time to peak discharge (hours)
- *K*' peak rate factor
- A drainage area (square miles)
- *Q* direct runoff depth (inches)
- *t_c* time of concentration (hours)

Dimensionless Curvilinear Unit Hydrographs Included with ICPR4

Gamma and Triangular Unit Hydrograph Functions with User Specified Peaking Factor

Gamma and Triangular Unit Hydrograph Functions with User Specified Peaking Factor

Name	SIMPLE BASIN			
Scenario	LUMP-DIST-EXL1	•		
Node	ZZ		Area	10
Hydrograph Method	NRCS Unit Hydrograph	ו 🔻	Curve Number	61
Infiltration Method	Curve Number	Ŧ	% Impervious	0
Time of Concentration	10	Select Existing	ltem X	0
Max Allowable Q	0	Included List	· · · · · · · · · · · · · · · · · · ·	0
Time Shift	0			
Unit Hydrograph	TRI	UH323		
Peaking Factor	156	UH484 DELMARVA28	34	
Comment	SFR 1/4 AC LOTS	TRI GAMMA		

Select either "TRI" or "GAMMA" and then type in the "Peaking Factor"

NRCS Unit Hydrograph Method Peak Rate Factor

- Used to reflect the effect of watershed storage on runoff hydrograph shape
- Higher values are used for watersheds with little or no storage effects
- Lower values are used for watershed with significant ponding effects
- Typically specified by regulatory agency responsible for permits

Peak Rate Factor Sensitivity

80

Peak Rate Factor Sensitivity

Time of Concentration Sensitivity

NRCS Unit Hydrograph Method Max Allowable Q and Time Shift

Name]	
Scenario	UNIT_HYDRO_3]	
Node		Area	0
Hydrograph Method	NRCS Unit Hydrograph	Curve Number	0
Infiltration Method	Curve Number] % Impervious	0
Time of Concentration	•] % DCIA	0
Max Allowable Q	0] % Direct	0
Time Shift	0	Rainfall Name	
Unit Hydrograph]	
Peaking Factor	0]	

NRCS Unit Hydrograph Method Max Allowable Q

84

NRCS Unit Hydrograph Method Time Shift

85

Using the Time Shift Parameter for Back-to-Back Storms

86

The Santa Barbara Urban Hydrograph method (SBUH) was originally developed in the 1970s by James M. Stubchaer and became popular at that time due to ease of use on a programmable calculator. In the SBUH method, the final discharge hydrograph is obtained by routing the instantaneous hydrograph (i.e. rainfall excess) for each time step through an imaginary linear reservoir with a routing constant proportional to the time of concentration of the drainage basin.

Name	SBUH		
Scenario	UNIT_HYDRO_3		
Node	ZZ	Area	100
Hydrograph Method	Santa Barbara Urban Hydrog 🔻	Curve Number	100
Infiltration Method	Curve Number	% Impervious	0
Time of Concentration	30	% DCIA	0
Max Allowable Q	0	% Direct	0
Time Shift	0	Rainfall Name	

ICPR4 includes 18 "built-in" <u>non-dimensional</u> rainfall distributions that can be used by specifying any of the following rainfall names along with the storm duration and rainfall amount.

NAME	NAME	NAME
~SCSI-24	~FLMOD	~FDOT-4
~SCSI-48	~ORANGE	~FDOT-8
~SCSIA-24	~SFWMD-72	~FDOT-24
~SCSII-24	~SJRWMD-96	~FDOT-72
~SCSII-48	~FDOT-I	~FDOT-168
~SCSIII-24	~FDOT-2	~FDOT-240

93

94

The rainfall distributions can be specified globally (i.e. for all basins) by setting the global rainfall data fields on the "Tolerances & Options" tab of the simulation manager.

Custom Rainfall Files

Text file (*.txt) can be created and placed in a sub-folder in the rainfall resources folder.

97

Custom Rainfall Files

The "rainfall folder" is specified on the "Resources & Lookup Tables" tab of the simulation manager.

Custom Rainfall Files

Description	<u>_</u>	File Type		
Historical Data (English Units - inches)		Rainfall I	ocket 7	Cime Increment
Historical Data (Metric Units – millimeters)	0	K ann an 1	acket I	inie incientent
Dimensionless Mass Curve (English Units – inches)	2012	4	3	23.000
Dimensionless Mass Curve (Metric Units – millimeters)	2012	4	7	2,000
Dimensionless wass corve (metric onics – minimeters)	2012	4	7	3.000
	2012	4	7	4.000
File Type	2012	4	7	6.000
2 Korm Duration	2012	4	18	16.000
24.0 Total Bainfall	2012	4	18	17.000
10.6	2012	4	18	23 000
0,0417 0,00046	2012	4	19	9.000
0.0833 0.00178	2012	4	19	11.000
0.125 0.00451	2012	4	19	16.000
0.1667 0.0089	2012	4	20	23.000
0.25 0.03573	2012	4	21	12 000
0.2917 0.06157	2012	4	21	13.000
0.3333 0.09602	2012	4	21	15.000
0.4167 0.21059	2012	4	21	17.000
0.4583 0.29448	2012	4	21	18.000
0.5 0.4392	2012	4	21	19.000
0.5417 0.64992	2012	4	21	23.000
0.625 0.82	2012	4	22	0.000
0.6667 0.87693	2012	4	22	1.000
0.7083 0.91918	2012	4	22	2.000
0.75 0.95158	2012	4	22	3.000
0.8333 0.98623	2012	4	22	4.000
0.875 0.99406	2012	4	22	9,000
0.9167 0.99717	2012	4	22	11.000
1 🕨 1 🤘	END	N	1	1
END	Year	Month	Day	Hour Ra

Rainfall

Dimensionless

Time

99

File Type o

1

2

3

0.001

0.002

0.033

0.911

1.125

0.566

0.093

0.035

0.013

0.006

0.001

0.015

0.043

0.192

0.004

0.002

0.001

0.001

0.010

0.012

0.003

0.005

0.007

0.010

0.007

0.050

0.082

0.194

0.010

0.010

0.001

0.003

Rainfall

Amount

Example #1 Land-Locked System

Project Setting Basin Map Layer

This area is located in the City of Ocala and includes several land-locked basins with no outlets other than highwater overflows.

DCIA is very important for land-locked.

Project Setting Land Cover Map Layer

Project Setting Land Cover Map Layer

103

Project Setting Soils Map Layer

If the CN method is to be used, then the hydrologic groups should be identified for each soil type.

Basin 2

Intersection with Land Cover & Soils

Lumped Approach Using Simple Basins Curve Numbers – Area Weighted Average

RASIN			HSG	CN	%IMD					
			лэс ^		7011VIF			104 5		
BASIN Z	3.19	SFR (38-00)	A	10	U	U		194.5	0.0	0.0
	1.28	SFR (38-00)	C	83	0	0		106.2	0.0	0.0
	1.17	COMMERCIAL (75-50)	Α	81	0	0		94.9	0.0	0.0
	0.65	GRASS	С	74	0	0		48.2	0.0	0.0
	1.14	GRASS	Α	39	0	0		44.3	0.0	0.0
	0.55	WOODS	С	70	0	0		38.3	0.0	0.0
	4.25	WOODS	Α	30	0	0		127.6	0.0	0.0
	0.51	SFR (38-19)	Α	61	0	0	im	Dorvio		0.0
	0.13	ROAD ROW (50-50)	Α	69	0	0	< ""			0.0
	0.25	POND	С	98	0	0	in	cluded	in CN	S 0.0
	0.04	POND	Α	98	0	0		3.5	0.0	0.0
	1.04	POND	D	98	0	0		102.2	0.0	0.0
	0.00	GRASS	D	80	0	0		0.3	0.0	0.0
	1.97	COMMERCIAL (60-30)	Α	75	0	0		147.6	0.0	0.0
	3.71	ROAD ROW (90-90)	Α	95	0	0		352.2	0.0	0.0
	0.32	ROAD ROW (90-90)	С	97	0	0		30.6	0.0	0.0
	0.82	ROAD ROW (50-00)	Α	69	0	0		56.6	0.0	0.0
	0.03	CHURCH (50-10)	Α	69	0	0		1.9	0.0	0.0
SUM	21.04			\square				1413.3	0.0	0.0
AVG							21.04	67.2	0.0	0.0

Typical Spreadsheet Supporting Calculation (external to ICPR)

Lumped Approach Using Simple Basins Curve Numbers – Area Weighted Average

S <u>c</u> enarios	ŀ	<u>l</u> ydrology	1D Hydraulics	Refe	rence	e <u>E</u> lements
		Simple Basins (Lumped)				
		Ma <u>n</u> ual				

🛩 Simple Basin Data Menu + 📓 🏢 📄 🗛 🎨 ℁ 🔇								
Simple Basin List # X	Name	BASIN 2]					
Scenario: Simple Basins - DCIA	Scenario	Simple Basins - no DCIA 🔻						
□ Scenario: Simple Basins - no DCIA	Node	NODE 2	Area	21.04				
BASIN 1 BASIN 2	Hydrograph Method	NRCS Unit Hydrograph 🝷	Curve Number	67.2				
BASIN 3	Infiltration Method	Curve Number 🝷	% Impervious	0				
BASIN 4 BASIN 5	Time of Concentration	24	% DCIA	0				
	Max Allowable Q	0	% Direct	0				
	Time Shift	0	Rainfall Name					
	Unit Hydrograph	UH484]					
	Peaking Factor	484]					
	Comment			▲				
				-				
		-	Create	Delete				
Main Grid	Main Grid							
Enter 'Name' 10 Simple Basin(s)								

Distributed Approach Using Manual Basins "Process Polygons" Tool

Basin Map Layer

Land Cover Map Layer

Soils Map Layer

Automatic Intersection of Map Layers
Distributed Approach Using Manual Basins "Process Polygons" Tool

Graphic Elements On		
Scenarios		
Scenarios Scenario1 Hydraulic Network Hode Types Simple Basin Manual Basin Mapped Basin Cross Section Types Reference Elements Overland Flow Regions Map Layers Manual Basin Map Layers Supple Scenario1 Fight click right click right click Sight click Sight click Sight click Sight click Sight click Sight click Sight click Sight click Supple State Supple State State State Supple State State Supple State S	Process Basin Polygons Basin Map Layer Land Cover Zone Map Layer Soil Zone Map Layer Rainfall Zone Map Layer	er FKMS Basins FKMS Land Cover FKMS Soils (SHG) (None)
	✓ Create New Records	
	✓ Update Existing Records	
		ок 🖓

Distributed Approach Using Manual Basins "Process Polygons" Tool

S <u>c</u> enarios	<u>Hydrology</u>	1D Hydraulics	Reference <u>E</u> leme	nts
	<u>Simple</u> Ma <u>n</u> ual	Basins (Lumped) Basins (Distribu) ted).	

The sub-basin data are automatically populated for each basin. Impervious and curve number lookup tables are used to calculate runoff for each sub-basin before combining and applying TC and unit hydrograph.

Name	BASIN 2	Manual Basin Sub-Basin Edit		
Scenario	Manual Basins 🔹	+ X X B 2 B		
Node	NODE 2	Area	Land Cover Zone	Soil Zone
		► 3.188384	SFR (38-00)	Α
Hydrograph Method	NRCS Unit Hydrograph 🔹	1.279844	SFR (38-00)	С
Infiltration Mathad	Curve Number	1.17210	COMMERCIAL (75-50)	Α
Inniciation Method		0.65202	2 GRASS	С
Time of Concentration	24	1.135904	GRASS	А
		0.547452	WOODS	С
Max Allowable Q	0	4.252342	WOODS	Α
Time Shift	0	0.5107	9 SFR (38-19)	А
		0.129844	ROAD ROW (50-50)	А
Unit Hydrograph	UH484	0.246763	POND	С
Peaking Factor	484	0.03615	POND	Α
Feaking Factor		1.042510	5 POND	D
Comment	A	0.004339	GRASS	D
		1.967900	5 COMMERCIAL (60-30)	Α
		3.70707	ROAD ROW (90-90)	Α
		0.31503	7 ROAD ROW (90-90)	С
		0.820294	ROAD ROW (50-00)	A
		0.02820	5 CHURCH (50-10)	Α
Create	Delete			

Distributed Approach Using Manual Basins Impervious Lookup Table

	% direct and initial abstraction for impervious and								
Impervious Set Data	pervious areas can be set in this table								
Menu - 📳 📄 🏢 🗛 🇞 🛞 🏋 💷			1						
Land Cover Zone	% Impervious	% DCIA	% Direct	Ia Impervious	Ia Pervious				
► CEMETARY (10-00)	10	0	0	0	0				
CHURCH (50-10)	50	10	0	0	0				
COMMERCIAL (60-30)	60	30	0	0	0				
COMMERCIAL (75-50)	75	50	0	0	0				
GRASS	0	0	0	0	0				
POND	0	0	0	0	0				
ROAD ROW (50-00)	50	0	0	0	0				
ROAD ROW (50-50)	50	50	0	0	0				
ROAD ROW (90-90)	90	90	0	0	0				
SCHOOL (60-00)	60	0	0	0	0				
SFR (38-00)	38	0	0	<u>M</u> apping	g Ta <u>b</u> les Scenarios	<u>R</u> egions <u>H</u> ydr	rology		
SFR (38-19)	38	19	0		<u>B</u> oundary Stag	je Sets			
WOODS	0	0	0		External Hydro	graph Sets			
					Roughness Set	ts			
Extract					Rainfall Excess	Methods			
					Impervious Se	ts			
Set Impervious					E <u>v</u> apotranspira	ation 5			
Enter 'Land Cover 2 <mark>one'</mark>	2 Impe	ervious Se	et(s)		CSV I <u>m</u> port - A CSV Export - A	\II \II			

Distributed Approach Using Manual Basins Curve Number Lookup Table

	2							
+ 🗴 🛪 🖶								
Land Cover Zone	Soil Zone	Curve	e Number			•		
ROAD ROW (90-90)	D					80		CNs are for
SCHOOL (60-00)	Α					39		
SCHOOL (60-00)	С					74		areas not
SCHOOL (60-00)	C/D					80		included in
SCHOOL (60-00)	D					80		0/ :
SFR (38-00)	Α					39		% impervious
SFR (38-00)	С					74		designations
SFR (38-00)	C/D					80	X	
SFR (38-00)	D					80		
SFR (38-19)	А					39		
SFR (38-19)	С					74		
SFR (38-19)	C/D					80		
SFR (38-19)	D							
WOODS	Α	<u>M</u> apping	Ta <u>b</u> les	S <u>c</u> enarios	<u>H</u> ydrology	1D Hy	draulics	Reference <u>E</u> lements
WOODS	С		<u>B</u> our	ndary Stage	Sets			
WOODS	C/D		<u>E</u> xte	rnal Hydrog	raph Sets			
WOODS	D		R <u>o</u> ug	jhness Sets				
			<u>R</u> ain	fall Excess I	Methods	•	<u>G</u> reen-	Ampt Sets
Extract			Impe	ervious Sets	s		<u>V</u> ertica	l Layers Sets
Set Curve Number			CSV	I <u>m</u> port - Al	I		<u>C</u> urve I	Number Sets 📐
[dec] Enter 'Curve Number'	1		CSV	E <u>x</u> port - Al				

Connecting Lookup Tables to Simulations Simulation Manager

Executing Simulations Simulation Execution

Elements Simulation Reports Window H Simulation Manager Simulation Execution Copy Resource Files	elp Simulation Execution Simulation Selection	→ Scenarios → Manual Basins → 04-inch → 06-inch → 08-inch → 10-inch + Scenario1 + Simple Basins - DCIA + Simple Basins - no DCIA	
	Thread Count Help	Autodetect	•

114 © 2019, Streamline Technologies, Inc.

Incorporating Nodal Network into Reports Capture View as Background Image

Graphic View Menu	BASIN 2 NODE 1 BASIN 2 NODE 2
Graphic Elements On Fight click Figh	Capture View X Name Nodal Network OK
Pyramid Capture View Expand All Below Collapse All Below	NODE 4

<u>S</u> imulation	Rep <u>o</u> rts	<u>W</u> indow	He <u>l</u> p		
	Mass <u>B</u> alance <u>S</u> imple Basins <u>M</u> anual Basins 1D <u>N</u> odes 1D <u>L</u> inks <u>Printable</u> Lin <u>k</u> Path Manager Process Polygons				
					<u>I</u> nput <u>S</u> imple Basin Max <u>M</u> anual Basin Max
					<u>N</u> ode Max Link Max Groundwater Mounding Custom

Impervious: 1 - doia	[Set]				
Land Course Zono	04 Tenenious	94 DVCTA	% Direct	To Imposions [in]	To Depuisur [in]
Land Cover Zone	% Impervious	% DCIA	% Direct	Ta Impervious [in]	La Pervious [in]
CEMETARY (10-00)	10.00	0.00	0.00	0.000	0.000
CHURCH (50-10)	50.00	10.00	0.00	0.000	0.000
COMMERCIAL	60.00	30.00	0.00	0.000	0.000
(60-30)					
COMMERCIAL	75.00	50.00	0.00	0.000	0.000
(75-50)					
GRASS	0.00	0.00	0.00	0.000	0.000
POND	0.00	0.00	0.00	0.000	0.000
ROAD ROW	50.00	0.00	0.00	0.000	0.000
(50-00)					
ROAD ROW	50.00	50.00	0.00	0.000	0.000
(50-50)					
ROAD ROW	90.00	90.00	0.00	0.000	0.000
(90-90)					
SCHOOL (60-00)	60.00	0.00	0.00	0.000	0.000
SFR (38-00)	38.00	0.00	0.00	0.000	0.000
SFR (38-19)	38.00	19.00	0.00	0.000	0.000
WOODS	0.00	0.00	0.00	0.000	0.000

Impervious Lookup Table

Nodal Network

C:\Presentations\2019 - Webinars\Lesson 1\Example Models\FK2\

10/12/2019 10:42

		3				
				1 10 7	LC 13	
Curve Number: 1 - dcia [Set]				Land Cover Zone	Soil Zone	Curve Number [dec]
Land Course Zana	Ceil Zone	Cursus Number [dec]		SFR (30-15)	0	
CEMETARY (10.00)	Soli Zone	Carve Namber [dec]		WOODS		
CEMETARY (10-00)	<u> </u>	35.0		WOODS	C C	
CEMETARY (10-00)	C/D	74.0		WOODS	45	
CEMETARY (10-00)	90	80.0		WOODS	D	
CEMETART (10-00)	0	30.0				
CHURCH (50-10)	<u> </u>	35.0				A
CHURCH (50-10)	C (D	74.0				
CHURCH (50-10)	00	80.0				
COMMERCIAL (60.20)		39.0				
COMMERCIAL (60-30)	A	39.0				
COMMERCIAL (60-30)	C C	74.0				
COMMERCIAL (60-30)	90	80.0				
COMMERCIAL (80-30)		30.0			I	
COMMERCIAL (75-50)	<u> </u>	35.0			1	
COMMERCIAL (75-50)	C	74.0		•		
COMMERCIAL (75-50)	QD	80.0			irve Numher	Lookup Table
COMMERCIAL (75-50)	0	30.0				LOOKup lable
GRASS	*	35.0				
GRASS	0	/4.0				
GRASS	40	80.0				
BOND .	0	80.0				
POND	A	98.0				
POND	C	98.0				
POND	40	98.0				
POND	U	98.0				
ROAD ROW (50-00)	A	39.0				
ROAD ROW (50-00)	C	/4.0				
ROAD ROW (50-00)	00	80.0				
ROAD ROW (S0-00)	0	80.0				
ROAD ROW (50-50)	A	39.0				
ROAD ROW (50-50)	C	/4.0				
ROAD ROW (50-50)	40	80.0				
ROAD ROW (50-50)	0	80.0				
ROAD ROW (90-90)	A	39.0				
ROAD ROW (90-90)	C	74.0				
ROAD ROW (90-90)	90	80.0				
SCHOOL (60.00)	0	30.0				
SCHOOL (60-00)	<u>^</u>	35.0				
SCHOOL (60-00)	C (D	/4.0				
SCHOOL (60-00)	90	80.0				
SCHOOL (60-00)	0	80.0				
SFR (38-00)	A	39.0				
SFR (38-00)	C	/4.0				
SFR (38-00)	40	80.0				
SFR (38-00)		80.0				
SFR (38-19)	A	39.0				
SFR (38-19)		/4.0				
SFR (38-19)	00	80.0				
OriDesessibless12040 - Michiganit	NEvernia Modale/EV71	10110010-10-10		OriDescentational 2010 - Michigan II	non (l'Evample Model/EK7)	
C.e-reservations/2019 - WebinarsiLesson 1	rigkangie Modelsinkal	10/12/2019 10/42		o. eresentations/2019 - Webinars/Les	son nexample wooesenzt	

10/12/2019 10:42

4

80.0 30.0 55.0 70.0 77.0

Node:

Hydrogr Infiltra Time of Co Max . Unit Pea	Scenario: Node: aph Method: ion Method: oncentration: Allowable Q: Time Shift: Hydrograph: aking Factor: Area:	Manual Basins NODE 2 NRCS Unit Hydro Curve Number 24.0000 min 0.00 cfs 0.0000 hr UH484 484.0 21.0320 ac	graph	Manual Basin Input Data
Area [ac]	Land Cover	Zone	Soil Z	one Rainfall Name
3.1884	SFR (38-00)		Α	
1.2798	SFR (38-00)		С	
1.1721	COMMERCIA	L (75-50)	Α	
0.6520	GRASS		С	
1.1359	GRASS		Α	
0.5475	WOODS		С	
4.2523	WOODS		Α	
0.5108	SFR (38-19)		Α	land Cover – Soi
0.1298	ROAD ROW	(50-50)	Α	
0.2468	POND		С	Due al al arrest
0.0362	POND		Α	Breakdown
1.0425	POND		D	
0.0043	GRASS		D	
1.9679	COMMERCIA	L (60-30)	Α	
3.7071	ROAD ROW	(90-90)	Α	
0.3150	ROAD ROW	(90-90)	C	
0.8203	ROAD ROW	(50-00)	Α	
0.0283	CHURCH (50	-10)	A	

Manual Basin Runoff Summary [Manual Basins]

Basin Name	Sim Name	Max Flow [cfs]	Time to Max Flow [hrs]	Total Rainfall [in]	Total Runoff [in]	Area [ac]	Equivalent Curve Number	% Imperv	% DCIA
BASIN 2	04-inch	25.17	12.0833	4.00	1.51	21.0370	72.8	38.32	23.58
BASIN 2	06-inch	44.34	12.0833	6.00	2.61	21.0370	67.9	38.32	23.58
BASIN 2	08-inch	66.94	12.0833	8.00	3.89	21.0370	65.0	38.32	23.58
BASIN 2	10-inch	92.57	12.0833	10.00	5.30	21.0370	63.0	38.32	23.58

Manual Basin Runoff Summary

NODE 2			
Scenario:	Manual Basins		
Type:	Stage/Area		
Base Flow:	0.00 cfs	Nc	ndo I
Initial Stage:	85.09 ft		
Warning Stage:	93.60 ft		
ft]	Area [ac]		Area [ft2]
85.09		0.0006	
85.20		0.0007	
85.40		0.0009	
85.60		0.0011	
85.80		0.0031	
86.00		0.0040	
86.20		0.0126	
86.40		0.0344	
86.60		0.0861	
86.80		0.1768	

Input Data

Stage [ft]	Area [ac]	Area [ft2]
85.09	0.0006	25
85.20	0.0007	30
85.40	0.0009	39
85.60	0.0011	49
85.80	0.0031	133
86.00	0.0040	174
86.20	0.0126	550
86.40	0.0344	1500
86.60	0.0861	3750
86.80	0.1768	7700
87.00	0.3237	14100
87.20	0.4568	19900
87.40	0.5642	24575
87.60	0.6858	29875
87.80	0.7868	34275
88.00	0.8936	38925
88.20	0.9716	42325
88.40	1.0359	45125
88.60	1.0795	47025
88.80	1.1186	48725
89.00	1.1559	50350
89.20	1.1886	51775
89.40	1.2207	53175
89.60	1.2397	54000
89.80	1.2557	54700
90.00	1.2741	55500
90.20	1.2956	56435
90.40	1.3120	57150
90.60	1.3275	57825
90.80	1.3493	58775
91.00	1.3642	59425
91.20	1.3843	60300
91.40	1.4067	61275
91.60	1,4262	62125
St	$\sigma \sigma = A r e 2$	200 63100
J U		64325
92.20	1,5042	65525
92.4	1.5266	66500
92.60	1.56/4	682/5
92.80	1,6265	/0850
93.0	1,6696	/3600
93.20	1.//1/	//1/5

C:\Presentations\2019 - Webinars\Lesson 1\Example Models\FK2\

C:\Presentations\2019 - Webinars\Lesson 1\Example Models\FK2\

10/12/2019 10:42

7

Stage [ft]		Area [ac]	Area [ft2]	
and a first	93.40	1.9043		82950
	93.60	2.0564		89575
	93.80	2.2584		98375
	94.00	2,5052		109125
	94.20	2.7606		120250
	94.40	3.0676		133625
	94.60	3.3924		147775
	94.80	3.7397		162900
	95.00	4.0680		177200
	95.20	4.3796		190775
	95.40	4.6654		203225
	95.60	4.8841		212750
	95.80	5.0786		221225
	96.00	5.2732		229700
	96.20	5.4195		236075
	96.40	5.5762		242900
	96.60	5.7478		250375
ſ	96.80	5.8833		256275
	97.00	6.0021	1.1	261450
	Stag	e – Area Ia	ible	267125
	97.😜	6.2489		272200
	97.60	6.3631		277175
	97.80	CONT 6.4646		281600
	98.00	6.5393		284850
	98.20	6.6024		287600
	98.40	6.6334		288950
	98.60	6.6626		290225
	98.80	6.6816		291050
	99.00	6.6937		291576
	99.20	6.6937		291576

Comment:

Node Max Conditions [Manual Basins]	Node Max Condit	tions [Man	ual Basins]
-------------------------------------	-----------------	------------	-------------

Node Name	Sim Name	Warning Stage [ft]	Max Stage [ft]	Min/Max Delta Stage [ft]	Max Total Inflow [cfs]	Max Total Outflow [cfs]	Max Surface Area [ft2]
NODE 2	04-inch	93.60	89.73	0.0010	25.17	0.00	54463
NODE 2	06-inch	93.60	91.52	0.0010	44.34	0.00	61804
NODE 2	08-inch	93.60	93.55	0.0010	66.94	0.00	87756
NODE 2	10-inch	93.60	93.86	0.0010	124.53	5.20	101831

Node Max Conditions

C:IPresentations/2019 - Webinars/Lesson 1/Example Models/FK2/

```
10/12/2019 10:42
```

8

cp14

Warning Stage 9 Node Stage w/Warning Stage: NODE 2 [Manual Basins] 94.00 Warning Stage 04-inch 06-inch 93.00 \checkmark 08-inch 8" rainfall 10" rainfall 10-inch 92.00 91.00 -6" rainfall Elevation (ft) 90.00 4" rainfall 89.00 88.00 Node Stage 87.00 Charts 86.00 85.00 10.00 0.00 20.00 30.00 Time [hrs]

Example #2 NOAA Atlas 14 FDOT Critical Storm Analysis

POINT PRECIPITATION FREQUENCY (PF) ESTIMATES

WITH 90% CONFIDENCE INTERVALS AND SUPPLEMENTARY INFORMATION

NOAA Atlas 14, Volume 9, Version 2

	PF tabular	PF gr	aphical	Supplemer	ntary informatio	n			Print page	Print page		
PDS-based precipitation frequency estimates with 90% confidence intervals (in inches) ¹												
Duration	Average recurrence interval (years)											
	1	2	5	10	25	50	100	200	500	1000		
5-min	0.456 (0.385-0.545)	0.527 (0.445-0.632)	0.639 (0.538-0.769)	0.726 (0.607-0.879)	0.838 (0.667-1.05)	0.918 (0.713-1.18)	0.993 (0.741-1.32)	1.06 (0.754-1.47)	1.15 (0.778-1.65)	1.20 (0.795-1.79)		
10-min	0.667 (0.564-0.799)	0.772 (0.652-0.926)	0.936 (0.787-1.13)	1.06 (0.888-1.29)	1.23 (0.977-1.54)	1.34 (1.05-1.72)	1.45 (1.08-1.93)	1.56 (1.10-2.15)	1.68 (1.14-2.42)	1.76 (1.17-2.62)		
15-min	0.814 (0.688-0.974)	0.942 (0.796-1.13)	1.14 (0.960-1.37)	1.30 (1.08-1.57)	1.50 (1.19-1.87)	1.64 (1.27-2.10)	1.77 (1.32-2.36)	1.90 (1.35-2.63)	2.05 (1.39-2.95)	2.15 (1.42-3.20)		
30-min	1.39 (1.18-1.66)	1.59 (1.34-1.90)	1.90 (1.60-2.28)	2.14 (1.79-2.59)	2.45 (1.96-3.07)	2.68 (2.08-3.44)	2.89 (2.16-3.84)	3.09 (2.19-4.28)	3.33 (2.26-4.81)	3.50 (2.31-5.21)		
60-min	1.86 (1.58-2.23)	2.14 (1.81-2.57)	2.57 (2.16-3.10)	2.91 (2.43-3.52)	3.34 (2.66-4.18)	3.65 (2.83-4.67)	3.93 (2.93-5.23)	4.20 (2.98-5.81)	4.52 (3.07-6.52)	4.74 (3.13-7.05)		
2-hr	2.34 (1.99-2.78)	2.70 (2.29-3.21)	3.25 (2.75-3.88)	3.68 (3.09-4.42)	4.22 (3.39-5.25)	4.61 (3.61-5.87)	4.97 (3.73-6.56)	5.31 (3.79-7.30)	5.71 (3.90-8.17)	5.98 (3.97-8.84)		
	254	204	2 56	4.05	4.60	E 4 4	E 27	E 00	6.40	6.02		
60-day	18.7 (17.0-20.8)	20.7 (18.7-23.0)	23.7 (21.4-26.5)	26.0 (23.3-29.3)	29.0 (24.8-33.7)	31.0 (25.9-37.0)	32.9 (26.4-40.7)	34.6 (26.4-44.6)	36.6 (26.6-49.1)	37.8 (26.8-52.5)		
¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS). Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipita recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not estimates and may be bigher than currently valid PMP values Please refer to NOAA Atlas 14 document for more information.												
Estimates	from the table in	CSV format: Pr	ecipitation frequ	uency estimates	s 🗸 Submit	*						

FDOT Critical Storm Analysis

PRECIPITATION FREQUENCY EST	TIMATES									
by duration for ARI (years):	1	2	5	10	25	50	100	200	500	1000
5-min:	0.456	0.527	0.639	0.726	0.838	0.918	0.993	1.06	1.15	1.2
10-min:	0.667	0.772	0.936	1.06	1.23	1.34	1.45	1.56	1.68	1.76
15-min:	0.814	0.942	1.14	1.3	1.5	1.64	1.77	1.9	2.05	2.15
30-min:	1.39	1.59	1.9	2.14	2.45	2.68	2.89	3.09	3.33	3.5
60-min:	1.86	2.14	2.57	2.91	3.34	3.65	3.93	4.2	4.52	4.74
2-hr:	2.34	2.7	3.25	3.68	4.22	4.61	4.97	5.31	5.71	5.98
3-hr:	2.54	2.94	3.56	4.05	4.68	5.14	5.57	5.98	6.48	6.83
6-hr:	2.9	3.34	4.06	4.66	5.48	6.12	6.76	7.41	8.28	8.94
12-hr:	3.33	3.77	4.56	5.28	6.37	7.29	8.27	9.34	10.9	12.1
24-hr:	3.8	4.28	5.21	6.11	7.53	8.78	10.2	11.7	13.9	15.8
2-day:	4.31	4.93	6.11	7.25	9.04	10.6	12.3	14.2	17	19.3
3-day:	4.74	5.43	6.72	7.95	9.89	11.6	13.4	15.4	18.4	20.8
4-day:	5.14	5.85	7.19	8.46	10.4	12.2	14	16.1	19.1	21.6
7-day:	6.2	6.94	8.31	9.6	11.6	13.3	15.2	17.2	20.2	22.6
10-day:	7.17	7.96	9.38	10.7	12.7	14.4	16.2	18.2	21.1	23.4
20-day:	10	11.1	12.8	14.4	16.6	18.3	20.1	22	24.6	26.6
30-day:	12.5	13.8	16	17.7	20.1	22	23.8	25.6	28	29.8
45-day:	15.8	17.5	20.1	22.2	24.9	26.8	28.7	30.4	32.6	34.1
60-day:	18.7	20.7	23.7	26	29	31	32.9	34.6	36.6	37.8

missing 4-hr and 8-hr durations

FDOT Critical Storm Analysis

NOAA Atlas 14 Rainfall Depths - Downtown Orlando

FDOT Critical Storm Analysis

Duration (hr)	2-yr	5-yr	10-yr	25-yr	50-yr	100-yr
1	2.14	2.57	2.91	3.34	3.65	3.93
2	2.7	3.25	3.68	4.22	4.61	4.97
4	3.1	3.75	4.3	5	5.5	6
8	3.5	4.23	4.9	5.8	6.52	7.3
24	4.28	5.21	6.11	7.53	8.78	10.2
72	5.43	6.72	7.95	9.89	11.6	13.4
168	6.94	8.31	9.6	11.6	13.3	15.2
240	7.96	9.38	10.7	12.7	14.4	16.2

FDOT Critical Storm Analysis

FDOT Critical Storm Analysis

Columns "BB" and "BC"

- I. copy and paste rainfall depths into column "BC"
- 2. click "file > save" &
 close the file
- 3. import the csv files in the simulation manager

FDOT Critical Storm Analysis

132 © 2019, Streamline Technologies, Inc.

×	Simulation M	lanager								
N	lame				$\bigcap \Delta \Delta \Delta t \log 14$					
E	- Scenario: Scenario1									
	002Y001	02Y001H								
	002Y002	H		FDOT	Critical Storm Analysis					
	002Y004	H								
	002Y008	Н								
	002Y024	H								
	002Y072	H								
	002Y168	Н								
	002Y240	Н								
	005Y001	Н								
	005Y002	Н								
	005Y004	H								
	005Y008	н								
	005Y024	н /								
	005Y072	н								
	005Y168									
	005Y240	Name	005Y008H		Scenario	Scenario1				
	010Y001	ents Re	sources & Look	up Tables Tolerance	es & Options					
	010Y002	rchina	SAOR		Intial Abstraction Recovery Time	24				
	010Y004	. cining								
H	010Y008	ations	6							
	10102012	Factor	0.5							
		erance	0.001		Simple / Manual Basin Rainfall Opt.	Global				
		um dZ	1							
		erance	0.0001		Rainfall Name	~FDOT-8				
					Rainfall Amount	4.23				
					Storm Duration	8				
	l									

FDOT Critical Storm Analysis

Elements Simulation Reports Window Help	Simulation Execution		×
Simulation Manager Simulation Execution Copy Resource Files	Simulation Selection	Scenarios Scenario1 002Y001H 002Y002H 002Y002H 002Y008H 002Y008H 002Y024H 002Y072H 002Y168H 002Y240H 005Y001H 005Y001H 005Y002H 005Y02H	
	Thread Count Help	Autodetect	ок

FDOT Critical Storm Analysis

<u>S</u> imulation	Rep <u>o</u> rts	<u>W</u> indow	He <u>l</u> p	
	Mass <u>S</u> imple <u>M</u> anu 1D <u>N</u> c 1D <u>L</u> ir	<u>B</u> alance e Basins al Basins odes oks		
	P <u>r</u> inta Lin <u>k</u> P Proce	ble ath Mana ss Polygo	ger ns	Input Simple Basin Max Manual Basin Max
				Node Max Link Max Groundwater Mounding Custom

FDOT Critical Storm Analysis

🛩 Custom Reports			
Title			
Report Sections	Item Selection	Report Sheet Selection	Simulation Selection
Simple Basin ↓ Simple Basin ↓ Add Remove Remove All	Item Selection	 ✓ Input Report ✓ Runoff Summary Report Mass Balance Summary Report ✓ Runoff Rate Chart Runoff Volume Chart ▲ Runoff Volume Chart<td>Simulation Selection ▲ ···□ 010Y024H ···□ 010Y072H ···□ 010Y168H ···□ 010Y240H ···□ 025Y001H ···□ 025Y002H ···□ 025Y008H ···□ 025Y002H ···□ 025Y002H ···□ 025Y002H ···□ 025Y072H ···□ 025Y240H ···□ 025Y240H ···□ 050Y001H ···□ 050Y001H</td>	Simulation Selection ▲ ···□ 010Y024H ···□ 010Y072H ···□ 010Y168H ···□ 010Y240H ···□ 025Y001H ···□ 025Y002H ···□ 025Y008H ···□ 025Y002H ···□ 025Y002H ···□ 025Y002H ···□ 025Y072H ···□ 025Y240H ···□ 025Y240H ···□ 050Y001H ···□ 050Y001H

FDOT Critical Storm Analysis

Simple Basin: BASIN 1	
Scenario:	Scenario1
Node:	72
Hydrograph Method:	NRCS Unit Hydrograph
Infiltration Method:	Curve Number
Time of Concentration:	30.0000 min
Max Allowable Q:	0.00 cfs
Time Shift:	0.0000 hr
Unit Hydrograph:	GAMMA
Peaking Factor:	300.0
Area:	25.0000 ac
Curve Number:	75.0
% Impervious:	0.00
% DCIA:	0.00
% Direct:	0.00
Rainfall Name:	

Comment:

FDOT Critical Storm Analysis

Simple Basin Runoff Summary [Scenario1]

Basin Name	Sim Name	Max Flow [cfs]	Time to Max	Total Rainfall	Total Runoff	Area [ac]	Equivalent	% Imperv	% DCIA
			Flow [hrs]	[in]	[in]		Curve Number		
BASIN 1	025Y001H	36.93	0.9333	3.34	1.19	25.0000	75.0	0.00	0.00
BASIN 1	025Y002H	37.60	1.1500	4.22	1.83	25.0000	75.0	0.00	0.00
BASIN 1	025Y004H	34.52	2.6167	5.00	2.45	25.0000	75.0	0.00	0.00
BASIN 1	025Y008H	36.86	4.1000	5.80	3.11	25.0000	75.0	0.00	0.00
BASIN 1	025Y024H	13.47	12.0667	7.53	4.62	25.0000	75.0	0.00	0.00
BASIN 1	025Y072H	11.13	60.0000	9.89	6.77	25.0000	75.0	0.00	0.00
BASIN 1	025Y168H	8.07	160.0000	11.60	8.38	25.0000	75.0	0.00	0.00
BASIN 1	025Y240H								0.00

Simple Basin Runoff Summary [Scenario1]

Sim Name

Basin Name

BASIN 1

BASIN 1

Flow [hrs] C:\Presentations\2019 - Webinars\Lesson 1\ 26.02 BASIN 1 00000010 0.9333 CONTRACTOR INCOME. ALC: NO. BASIN 1 1.1500 025Y002H 37.60 34.52 025Y004H BASIN 1 2.6167 BASIN 1 025Y008H 36.86 4.1000 BASIN 1 025Y024H 13.4712.0667 BASIN 1 60.0000 025Y072H 11.13

025Y168H

025Y240H

8.07

10.26

Max Flow [cfs]

Time to Max

160.0000

184.0000

2019 19:07

3.34

4.22

5.00

5.80

7.53

9.89

11.60

12.70

Total Rainfall

[in]

FDOT Critical Storm Analysis

Next Webinar – Lesson 2: Hydraulics, Part 1

Wednesday October 23, 2019 11:30 – 1:30 (EDT)

We will try to post a recording of this webinar and/or the presentation material as soon as we can. To find them: "Check for Updates"

in about a week or so.

support@icpr4.com